Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Любознательное поведение и самоисследование

Поиск

4. ПОНИМАНИЕ И ОБУЧЕНИЕ

 

Мы определили выше понимающее поведение (с. 266 и далее) как функцию механизмов текущей информации. Но только что описанные высшие функции понимающего поведения содержат в себе также процессы обучения, и обратно, очень многие процессы обучения заключают в себе элементы понимающего поведения.

При всех сколько-нибудь сложных процессах понимающего решения задач функционируют механизмы, доставляющие текущую информацию во временной последовательности. Сообщения, принятые вначале, должны каким-то образом накапливаться, поскольку, как можно показать, они взаимодействуют с последующими, делая таким образом возможным понимающее решение. Далее, как уже было сказано, когда антропоиды оказываются перед задачей, решение которой требует понимания, они никогда не действуют сразу. Уже на более низком уровне пространственной ориентации, как мы видели, ориентированное движение следует за временем неподвижности, когда животное, постоянно меняя направление взгляда, собирает информацию о пространственных условиях.

Уже в этом случае, и тем более при более высокоорганизованном понимающем поведении, сообщения механизмов, получающих текущую информацию, должны сравниваться и приводиться в связь друг с другом. Решение задачи должно быть, разумеется, функцией системы, возникающей из интеграции именно этих механизмов. Но в работе этой системы должны принимать участие функции памяти. Вольфганг Кёлер описывает, как шимпанзе, с которыми он провел свои классические эксперименты над понимающим поведением, систематически, шаг за шагом просматривали подробности поставленной задачи и некоторым образом все эти подробности запоминали. Нечто подобное можно было видеть у орангутана, поведение которого было описано выше.

Другая комбинация функций понимания и обучения обнаруживается уже в самых примитивных формах обучения посредством проб и ошибок. Даже в тех случаях, когда одно и то же инстинктивное движение испытывается на различных объектах (с. 325 и след.) — так что подлинное исследовательское поведение еще отсутствует, — уже самые первые попытки совсем еще неопытного животного никогда не бывают совершенно ненаправленными, как «эксперименты» генома. Даже когда организм не обладает, по-видимому, ни малейшей информацией для решения поставленной задачи, когда, например, кошку запирают в классический "ящик с секретом" (Vexierkiste), попытки решения всегда начинаются в направлении, указываемом текущей информацией. Уже с самого начала они отнюдь не состоят, например, в слепых комбинациях мышечных сокращений; кошка не пытается выбраться из ящика, скажем, прищуриванием глаз или облизыванием лап. Более того, она сразу принимает гораздо более «разумные» меры, царапая стены, пытаясь просунуть лапы и нос в щели ящика и даже начиная попытки освобождения с тех мест своей тюрьмы, где это кажется наиболее обещающим. В основе действий животного лежит обилие текущей информации, весьма существенно увеличивающее его шансы на успех и аналогичные в функциональном отношении рабочей гипотезе.

Это можно резюмировать таким образом: не существует функций высшего и сложного понимания, не имеющих своей предпосылкой участие обучения и памяти. Но, с другой стороны, обучение посредством проб и ошибок никогда не происходит без руководства механизмов ориентации, неотделимых от понимания. Как мы увидим в одной из следующих глав, элементы понимающего поведения играют существенную роль также и в подлинном любознательном обучении.

Наконец, я рассмотрю в этом разделе еще одно, на этот раз антагонистическое отношение между обучением и понимающим поведением, важность которого подчеркнул Вольфганг Кёлер в своих исследованиях на шимпанзе. Последовательность действий, безусловно возникающая при своем первом выполнении из понимающего поведения, после многократного повторения закрепляется в рутинно выполняемое дрессированное поведение. Если после этого предлагается та же задача с очень небольшим изменением, которое само по себе не делает ее труднее, но не подходит к уже превратившемуся в рутину методу решения, то животное терпит неудачу — исключительно по той причине, что не может вырваться из рутины своего поведения, превратившегося в дрессировку. Чем меньше требуемое изменение, тем сильнее привычка блокирует решение, которое было бы найдено без труда «необученным» животным.

Норман Майер подробно изучил это же явление на крысах, а также поставил на людях следующий изящный эксперимент. Большому числу испытуемых предлагалась задача связать друг с другом два каната, свисавших с потолка спортивного зала. Расстояние между канатами было выбрано столь большим, что с концом одного из них в руке нельзя было дотянуться до другого. В качестве единственного орудия был предложен большой камень. Решение состояло, конечно, в том, чтобы привязать камень к одному из канатов, заставить его качаться как маятник, а затем, подойдя к качающемуся камню с другим канатом в руке, поймать его в крайнем положении. Решение нашла поразительно небольшая часть подопытных лиц, немногим более 60 %. Затем перед другой группой была поставлена та же задача, но вместо камня была предложена кочерга. Ее гораздо легче было привязать к канату, и она столь же хорошо могла сыграть роль маятника, но процент решивших задачу снизился, составив теперь чуть больше 50 %. Объяснялось это тем, что значительное число лиц застряло в безуспешных попытках использовать кочергу как крюк, т. е. пыталось с одним из канатов в руке зацепить кочергой второй, что, разумеется, было исключено надлежащим выбором расстояния.

Майер приходит к убедительному заключению, что хотя выученное и составляет предпосылку для любого понимающего подхода к решению — без опыта с различными качающимися предметами никто не сумел бы решить предложенную задачу, — но и обратно, «въевшиеся» привычки мышления и выученные методы очень часто могут мешать отысканию решения. Майер определяет способность к понимающему решению задач как готовность переменить метод, начиная с самой основы.

История науки показывает на ряде примеров, как упорные привычки мышления и методического поведения могут препятствовать решению задач, по существу, не столь уж трудных. Именно этим торможением объясняется, почему великие открытия так часто делались не специалистами в соответствующих областях. Второй закон термодинамики был сформулирован не физиком, а врачом, Робертом Юлиусом Майером;[66] возбудитель сифилиса был открыт не бактериологом и не патологом, а зоологом Шаудином. Историю этого открытия я знаю со слов моего отца, которому ее рассказал сам Шаудин. Он сделал то же, что предпринял бы любой зоолог в качестве первого шага микроскопического исследования: присмотрелся в микроскопе к нефиксированному, неокрашенному "нативному[67] препарату" сифилитического секрета,[68] и с первого же взгляда заметил скопление спирохет. Тогда он спросил своего друга-патолога, в лаборатории которого это произошло: "Разве в мазке сифилитического гнойника всегда бывает так много спирохет?" На это он получил удивленный отрицательный ответ. Дело в том, что спирохеты не окрашиваются, а потому невидимы в препаратах, изготовленных обычными методами бактериологии и патологической гистологии.

 

5. ПРОИЗВОЛЬНОЕ ДВИЖЕНИЕ

 

Наряду с эволюцией пространственной ориентации и все более точным и детальным представлением пространства должны были, очевидно, возникать соответствующие им более дифференцированные и тонкие возможности движения. Без них организм не смог бы учитывать в своем поведении все подробности этой богатой информации; иными словами, без такого в некотором смысле зеркального отображения в моторном поведении высокое развитие пространственной ориентации и понимания не было бы действенным. Это не значит, что эволюция моторики произошла в виде приспособления к пространственной ориентации; то и другое, и произвольное движение, и понимание пространства, возникли как приспособления к требованиям, которые предъявляет к организму сложно структурированное жизненное пространство. Таким образом, обе функции, несомненно, возникли "рука об руку" друг с другом. Впрочем, физиологически они независимы друг от друга, как это видно в тех редких случаях, когда одна из них опережает другую. Дальше мы рассмотрим некоторые относящиеся сюда примеры.

Существуют все мыслимые переходы между теми центрально координируемыми формами движения, на которые вообще не влияют механизмы ориентации, и такими, которые в их на первый взгляд безграничной приспособительной способности и пластичности служат орудиями понимания. Хорошими примерами первых являются инстинктивные движения ухаживания у многих утиных птиц; примерами вторых — так называемые произвольные движения, о которых уже была речь на с. 336. Многие старые исследователи объединяли рефлекторную компоненту управления с локомоторным[69] побуждением, почти всегда эндогенно-автоматическим, в общее понятие таксиса; с функциональной точки зрения такое объединение, в сущности, закономерно. Таким образом, когда раньше говорили о положительном или отрицательном фототаксисе или гелиотаксисе, а еще раньше о положительных или отрицательных тропизмах, то под этим понимали не только поворот в новое направление, но и дальнейшее движение в этом направлении.

Но здесь мы имеем дело с отношениями, существующими между когнитивными функциями пространственной ориентации и моторными процессами, которые им подчинены. Поэтому мы должны ввести для когнитивного и для моторного процесса строго различные понятия. Прибегая к не раз уже использованному сравнению с управлением корабля, мы должны отчетливо различать деятельность капитана, вычисляющего по различным данным местонахождение судна и наиболее выгодный курс к выбранной цели, и моторные функции корабля, находящегося в его распоряжении для достижения этой цели.

Характер и возможности влияния, оказываемого капитаном на технические устройства своего корабля, и влияния пространственной ориентации и понимания на моторику животного вполне аналогичны. То, что «приказывают» техническим устройствам или моторике, — это, во-первых, торможение и снятие торможения, часто соединяемые с возможностью переключения на обратный ход, и, во-вторых, налагающиеся на это повороты, величина которых определяется в зависимости от условий окружающей среды, как это видно в управлении судовым рулем и во многих топических реакциях (см. 289). Обе эти возможности могут осуществляться как по отдельности, так и вместе, во всех мыслимых комбинациях.

Торможение и расторможение встречаются как единственные способы влияния системы в целом на пространственное перемещение, конечно, только у самых низших одноклеточных, выбирающих благоприятные места по принципу кинезиса, рассмотренному в 4.5. Многие из этих существ, например многие жгутиконосцы, по-видимому, не способны даже дать своему двигательному аппарату команду "full stop",[70] а могут лишь «выбирать» между замедленным движением и "полным вперед". По-видимому, неизвестно, есть ли среди жгутиковых способные к переключению на обратный ход.

Как мы уже знаем, ресничные инфузории, такие, как туфелька, умеют делать гораздо больше; они способны управлять по крайней мере тремя различными областями на поверхности своего тела, снабженными гребными ресницами, и могут независимо останавливать реснички в этих областях и включать их на прямой или обратный ход. На этой способности основаны их фобические и топические повороты.

Метод выполнения целенаправленных поворотов посредством торможения и расторможения независимо управляемых движителей давно уже применяется в человеческой технике. Как знает каждый любитель Марка Твена, у старых пароходов на Миссисипи каждое из двух боковых колес имело привод от отдельной машины. Другой пример — современные гусеничные тракторы. Эти два двигательных устройства — единственные созданные органическим миром системы, поведение которых полностью соответствует теории тропизмов Жака Лёба.

Вторая возможность направить перемещение животного в определенную сторону состоит в том, что курс определяется механизмом, независимым от двигательного аппарата, например движением руля на корабле или боковым изгибом тела у многих позвоночных. Примеры этого мы также находим уже на уровне одноклеточных. Для жгутиковой евглены, обладающей хлорофиллом, целесообразно держаться тех мест, где интенсивность освещения обеспечивает фотосинтез. Евглена достигает этого, изогнувшись изящной дугой по направлению к источнику света, а затем прямо двигаясь к нему. Метцнер убедительно показал, как выполняется эта ориентация. Как и многие одноклеточные, евглена плавает, постоянно вращаясь вокруг своей продольной оси. У нее есть две органеллы, светочувствительное место в протоплазме и пятно, пигментированное в ярко-красный цвет, так называемая стигма. Когда при вращении вокруг продольной оси стигма бросает тень на светочувствительное место, это реактивно запускает удар жгутиков, поворачивающий передний конец евглены на постоянный угол в направлении света. Эти небольшие повороты в одну сторону повторяются до тех пор, пока евглена не начинает плыть точно в направлении света. Теперь стигма вращается вокруг светочувствительного места, не бросая на него тени. Выводы Метцнера в свое время оспаривались. Но уже строго круговой путь, описываемый животным, — "как будто проведенный циркулем", по его выражению, повторенному затем другими наблюдателями, — однозначно подтверждает правильность его заключений.

Пример формы-движения высшего позвоночного, в которой наследственная координация управляется таксисом, наподобие управления корабля рулем, был изучен совместно Н. Тинбергеном и мною в 1938 году. Когда самка серого гуся подкатывает к гнезду выпавшее оттуда яйцо, она выполняет это с помощью движения головы и шеи, происходящего точно в плоскости симметрии птицы, которое само по себе совершенно неизменно, так что ни его форма, ни прилагаемая сила не могут быть изменены внешними стимулами. Гусыня «застревает», если ее заставляют перекатывать слишком большой предмет, не справляется по слабости с предметом лишь немного тяжелее гусиного яйца, а более легкий поднимает в воздух. В течение этого движения яйцо должно находиться в равновесии на нижней части клюва, что достигается небольшими боковыми стабилизирующими движениями — таксисами, которые запускаются прикосновениями яйца к нижней части клюва. Если после начала движения ловким приемом убрать яйцо, то движение проводится до конца вхолостую в плоскости симметрии птицы, в то время как боковые стабилизирующие движения прекращаются, что происходит, впрочем, и в том случае, когда гусыню заставляют «перекатывать» вместо яйца деревянный кубик, устойчиво лежащий на краях нижней части клюва и не угрожающий, подобно яйцу, скатиться в сторону. Зрители заснятого нами фильма об этом процессе (в Encyclopaedia cinematographica[71]) неизменно поражаются тому, сколь механически происходит описанный процесс у птицы, весьма умной в других отношениях.

Мы познакомились с примерами действия двух принципов, позволяющих высшим инстанциям организма целесообразно управлять его моторикой; во-первых, это «разрезание» наследственных координации, разбиваемых с помощью торможения и расторможения на подходящие куски; во-вторых, управление наследственной координацией посредством одновременно протекающего движения, ориентируемого внешними стимулами. Есть лишь немного примеров, где тот или иной из этих двух процессов настолько преобладает, как в приведенных выше случаях. В большинстве случаев, особенно у высших животных, они действуют одновременно, тысячью разных способов сотрудничая друг с другом.

Торможение и расторможение всегда сохраняют свою важную роль также и у высших организмов. Можно показать, что не только у дождевого червя, но и у человека эндогенно-автоматические, центрально координируемые формы движения происходили бы непрерывно, если бы их не задерживало, когда они не нужны, центральное торможение. Если эта функция отказывает, как бывает при многих повреждениях мозга, особенно после воспаления мозга, энцефалита, то некоторые эндогенно-автоматические координации движений, как, например, сосательные движения рта или хватательные движения руки, происходят в непрерывной последовательности.

Даже у низших беспозвоночных высший «центр» центральной нервной системы имеет наряду с торможением и расторможением наследственных координации еще и другие важные функции. «Мозг» дождевого червя, его верхнеглоточная ганглия, не только определяет, должна ли быть заторможена или расторможена центрально координируемая эндогенная наследственная координация и в какой степени это должно быть сделано; он решает также, какие из различных форм движения, находящихся в распоряжении животного, должны быть использованы в данный момент.

Хотя функциональное целое, состоящее из наследственной координации и стоящих над нею механизмов торможения, представляет собой замкнутую, подлинно независимую систему, такой механизм, всегда служащий одной, вполне определенной функции, часто контролирует и использует не всю мускулатуру животного. Остается, таким образом, место для других моторных процессов. Так же как при перекатывании яйца у серого гуся наследственно координируемые и управляемые таксисами двигательные импульсы приводятся в действие одновременно, при некоторых обстоятельствах две наследственные координации могут налегать друг на друга, составляя единую форму движения. Это может происходить на различных уровнях интеграции: у рыб случается, что два двигательных органа, например хвостовой плавник и грудные плавники, одновременно подчиняются противоположным двигательным импульсам, так что один плавник гребет вперед, а другой назад. Но антагонистические импульсы могут также складываться в единое мышечное сокращение. Эрих фон Гольст показал это на рефлекторных и эндогенно-автоматических движениях плавников губановых рыб.[72]

Как уже было сказано в начале главы, с усложнением когнитивных процессов, доставляющих понимание сложных пространственных структур, возрастают требования, предъявляемые к приспособительной способности моторики животного. Чтобы удовлетворить этим требованиям, используются оба упомянутых выше принципа приспособления форм движения, и поучительно исследовать на близко родственных животных, живущих в различных жизненных пространствах, в какой мере они умеют владеть собственной моторикой в данных условиях. Чем менее однородно жизненное пространство, тем меньше должен быть по необходимости "minimum separabile"[73] перемещения, т. е. наименьшая часть наследственной координации, которая может быть независимо использована. У быстро бегающих животных открытой степи влияние, оказываемое механизмами пространственного приспособления на наследственные координации перемещения, ненамного выходит за пределы того, чем капитан может воздействовать на технические устройства своего корабля: шаг, рысь и галоп могут быть «предписаны» лишь как целые координированные аллюры, а новые двигательные комбинации, как знают наездники, удается в лучшем случае лишь навязать дрессировкой. Как показали Цееб и Трумлер, все движения, выдрессированные у лошадей испанской школой верховой езды, свойственны лошади как наследственные координации, и лишь запуск их посредством приказов, так называемые «подсказки» ("Hilfen") наездника, основывается на образовании условных реакций.

У степного животного наименьшая единица двигательной координации может быть относительно большой. Почва предоставляет для каждого прыжка в галопе примерно такую же опору, как для предыдущего и следующего. Если в отдельных случаях это не так, то препятствие чаще всего различимо уже на расстоянии, позволяющем животному вовремя остановиться или обогнуть его. При появлении неожиданных препятствий лошади, как известно, сплошь и рядом падают.

Наложение управляемых таксисом движений на локомоторные наследственные координации лошадей очень невелико. Конечно, как можно заметить, при подъеме по неровной почве лошадь вовсе не ступает вслепую, она следит за дорогой и ставит ноги примерно туда, где есть хорошая опора, но эта ее способность попадать в цель крайне неточна. Лошадь не умеет поставить ногу с прицелом в данное место, например переступить с вершины валуна на следующий. Осел, а также мул справляются с этим лучше, а горные зебры, по мнению хороших наблюдателей, в этом особенно искусны.

Отношения, вполне аналогичные наблюдаемым у эквидов[74] степей и гор, можно видеть у антилоп. Степные антилопы ведут себя подобно лошадям, но наша горная антилопа, серна, по приспособляемости и уверенности движений превосходит, пожалуй, всех млекопитающих, кроме приматов. Особенно удивительно, что эти животные способны при каждом шаге прицельно ставить ногу в надлежащее место, не отказываясь при этом от такой сберегающей энергию наследственной координации, как галоп. Даже на крупной каменной осыпи из глыб очень разной величины они беспрепятственно продолжают свой галоп в том же ритме, и лишь небольшие синкопы, делающие их бег еще более изящным, выдают то обстоятельство, что наложение управляемых движений не вполне достаточно, так что серне часто приходится все же прибегать к торможению и расторможению наследственной координации, чтобы приспособить ее к строению местности.

Необходимость разрыва жестко координированных последовательностей движений для приспособления к пространству становится особенно ясной в тех случаях, когда, как уже было упомянуто на с. 362, пространственное понимание животного было бы достаточно, чтобы справиться с определенной задачей, но этому мешает несовершенство имеющейся моторики. Наглядной аналогией этого редкого явления может быть старая, вошедшая в пословицу острота дунайских судовщиков. Капитан колесного парохода, которому не удалось правильно подойти к причалу в стоячей воде и который рассчитывает подвести судно к требуемому месту подвижками взад и вперед, бесчисленное множество раз командует "три удара вперед, четыре удара назад, пять вперед" и т. д., пока в яростном отчаянии не дает команду "два в сторону", к чему, как известно, колесный пароход не способен.[75] Но судно с поперечным винтом в носовой части и приводом фойта — Шнейдера могло бы выполнить приказ отчаявшегося дунайского капитана.

Вот аналогичный случай в поведении животного. Серый гусь учится подниматься и спускаться по лестнице, причем последнее дается куда труднее. Если при этом высота и ширина ступеней несколько больше, чем это подходит к длине гусиного шага, он оказывается неспособным исправить небольшим промежуточным шагом фазовое отношение, которое становится с каждым шагом все более неблагоприятным. Наконец его нога опускается на ступень так близко к ее заднему вогнутому углу, что при следующем шаге он наталкивается задней стороной лапы на передний край той же ступени, а потому не может достать ногой ближайшую нижнюю. Тогда он оттягивает лапу назад, но только для того, чтобы много раз, скользя лапой по краю ступени, ступать ею в пустоту. Наконец гусь выходит из положения, прибегнув к помощи крыльев, и, не нагружая повисшую в пустоте ногу, совершает одноногий прыжок на ближайшую нижнюю ступень. Тогда восстанавливается приемлемое фазовое отношение и птица беспрепятственно спускается по ряду дальнейших ступеней, пока отношение между ступенями и шагами снова не выходит из фазы, после чего весь процесс повторяется.

Турецкая утка[76] и каролинская утка[77] нисколько не превосходят серого гуся в понимании пространства, но, как настоящие обитательницы деревьев, они обладают моторной способностью, очевидным образом отсутствующей у гуся: они могут сделать управляемый пониманием рассчитанный шажок до переднего края ступени, когда нижняя ступень оказывается для них слишком далеко.

Есть и другая ситуация, в которой серый гусь вследствие недостаточного владения моторикой оказывается вынужденным совершать очень странные и бестолковые движения буквально "против здравого смысла". Когда гусю нужно преодолеть твердое препятствие высотой по его грудь, например ограду газона из полосового железа, то уже в нескольких метрах от препятствия можно заметить у него понимание такой необходимости. Именно, делая шаги, он поднимает ноги все выше, так что нередко уже за целый шаг от ограды нога его поднимается выше самого препятствия. Редко случается, что нога попадает в точности на верхний край железной полосы; если она попадает слишком далеко или не дотягивается до края, что случается столь же часто, то гусь выходит из положения уже описанным способом, с помощью крыльев. В виде исключения серые гуси иногда ведут себя в таких случаях иначе: вместо того чтобы выступать описанным выше смешным "парадным шагом", они спокойно подходят к ограде, прицеливаются вытянутой и дрожащей от напряжения шеей к ее верхнему краю, вспрыгивают обеими ногами на ограду и сразу же прыгают вниз, на другую сторону. Каролинские и турецкие утки всегда ведут себя таким образом, но не проявляют никакого заметного возбуждения.

Весьма вероятно, что «изобретение» эволюции, состоявшее в вырезании из длинной последовательности движений некоторой наследственной координации куска, определяемого ориентацией и пониманием, и превращении этого куска в независимо употребляемый элемент движения, было первым шагом к возникновению так называемого произвольного движения. Такой вырезанный кусок имеет с произвольным движением важное общее свойство: из него и других подобных кусков можно составить новую последовательность движений, приспособленную к весьма специальным внешним обстоятельствам и достигающую своей цели, как и наследственная координация, гладко и без промедления от задержки реакций. Как уже упоминалось, такая "приобретенная моторика", как ее назвал Отто Шторх, возникла в эволюции позже "приобретенной рецепторики". Кроме того, мы уже знаем, что приобретение путевых дрессировок является самой примитивной известной нам формой обучения движению и что, вероятно, и более сложные последовательности движений выучиваются таким же способом.

Элементы движения, составляющие перемещения, основываются, как мы знаем, на эндогенной выработке стимулов и центральной координации. Насколько известно, эти формы движения в своей импульсивной последовательности вообще не модифицируемы обучением; их кажущаяся «пластичность» объясняется многообразием тех процессов, которые образуют слой между ними и внешним миром, отчасти тормозя и растормаживая их, отчасти на них налегая. Эрих фон Гольст называет все эти ориентирующие во времени и пространстве процессы "мантией рефлексов". Посредническая функция этого физиологического аппарата опирается, насколько я понимаю, на два уже описанных процесса: либо на лежащую в основе наследственную координацию накладывается управляемое движение, либо, если ее течение слишком долго и слишком жестко, она разрубается на куски, которые вследствие их краткости легче поддаются соединению в разнообразные последовательности, удовлетворяющие требованиям пространственного понимания.

То, что обычно называют произвольными движениями человека, — это уже большей частью результаты обучения движению, т. е. "заученные " движения, составленные из мельчайших моторных элементов. Как уже было сказано (с. 336), мельчайшие моторные элементы всегда находятся на гораздо более высоком уровне интеграции, чем уровень фибриллярных сокращений. Точнее говоря, под произвольными движениями следовало бы понимать применение этих отдельных имеющихся в распоряжении организма мельчайших координации, еще не соединенных предыдущим обучением в гладкую последовательность. Это применение всегда выглядит в высшей степени неуклюже, примерно как поведение мелкого млекопитающего, впервые вышедшего на какой-нибудь путь.

Если мы хотим дать функциональное определение произвольного движения, то наряду с уже указанными его свойствами нужно упомянуть еще одно: такое движение может быть приведено в действие в любой момент. Не все движения перемещения обладают этим свойством. Как мы знаем из исследований Эриха фон Гольста, выработка эндогенных стимулов, от которой зависит некоторая форма движения, находится в постоянном отношении к "нормальному потреблению", т. е. к частоте, с которой это движение в среднем выполняется в повседневной жизни животного. Губан плавает почти весь день, так что в естественных условиях его грудные плавники вряд ли останавливаются хоть на мгновение от восхода солнца до того, как он засыпает незадолго до заката. Напротив, плавательная деятельность морского конька ограничивается в среднем несколькими минутами в день. Соответственно этому у губана, лишенного мозга и подвергаемого искусственному дыханию, служащие перемещению грудные плавники работают непрерывно; напротив, у препарированного таким же образом морского конька важнейший орган его перемещения, спинной плавник, вообще не движется. Но он не лежит, как у неоперированной рыбы, плотно сложенным в предназначенном для этого желобе на спине, а стоит в «приспущенном», частично выпрямленном виде. Определенными стимулами, например давлением на область горла, можно заставить спинной плавник принять его нормальное, сложенное положение. Если его долго удерживают в этом положении, то после прекращения давления он выпрямляется, поднимаясь выше, чем был ранее в «приспущенном» положении, и притом тем выше, чем дольше он удерживался в сложенном положении внешним стимулом. Если давление продолжалось достаточно долго, то после прекращения тормозящего стимулирования плавник не просто поднимается до максимальной высоты, а выполняет в течение некоторого времени волнообразные движения, как при плавании вперед. Эрих фон Гольст интерпретирует это явление, известное уже Шеррингтону и названное им "спинальным контрастом", следующим образом: выпрямление плавника питается тем же эндогенным источником стимулов, который вызывает его колебание при плавании, и потребляет специфическое активирующее возбуждение того же рода. Моторика выпрямления плавника имеет более низкое пороговое значение, чем локомоторное колебание, и потребляет меньше специфического возбуждения. Приспущенное положение плавника на невозбужденном препарате спинного мозга потребляет в точности столько эндогенного возбуждения, сколько постоянно производится. Спадание плавника при нажатии области горла есть такое же действие, какое в нормальном случае осуществляется высшими инстанциями центральной нервной системы. Пока действует торможение, возбуждение специфической активности экономится, в некотором смысле накапливается, и после снятия торможения проявляется в том, что начинает активировать даже моторный процесс с более высоким порогом. С этим допущением согласуется и тот факт, что на препарате спинного мозга плавник, перестав работать, очень медленно возвращается по асимптотической кривой к прежнему приспущенному положению.

Аналогичные различия в выработке специфической энергии, активирующей часто используемые и редко используемые формы поведения, наблюдаются у многих животных, например у различных птиц. У мелких птиц, таких, как зяблики и синицы, способы перемещения меняются в течение дня бесчисленное множество раз, переходя от прыгания к полету и обратно. Хотя периоды полета часто очень коротки, такая птица проводит все же в полете значительную часть своего времени бодрствования и прежде всего должна быть в любой момент готова взлететь. При таком типе перемещения полет производит на наблюдателя несомненное впечатление произвольного движения. Птица никогда не может прийти в состояние, в котором она «захотела» бы летать, но не смогла.

У редко летающих птиц, например у гусей, это вполне может случиться. Кроме времени перелета гуси летают, как правило, всего дважды в день, утром и вечером. Даже если удается побудить их дрессировкой летать в другое время дня, то этим создается ситуация, в которой они используют двигательную координацию, запускаемую не "ради нее самой, аналогично тому, как мы используем наши произвольные движения. Но при этом процесс взлета происходит совсем иначе, чем этого ожидает привычный к произвольным действиям человек. Когда раздаются первые возгласы служителя, отправляющегося к известному им месту кормления, гуси тотчас же становятся внимательными и не спеша, но уверенно направляются к месту, откуда они привыкли взлетать. Но кто думает, что, придя туда, они сразу же расправят крылья и улетят, тот ошибается. Гуси стоят на месте, вытягивают шеи и начинают церемонно "приводить себя в летательное настроение". Их эмоциональные восклицания постепенно меняются, становятся отрывистее и короче, незаметно переходя в типичные звуки взлета. Одновременно с этим начинается покачивание клювом из стороны в сторону, происходящее с возрастающей частотой; оно выражает летное настроение и, как можно показать, передает его собратьям по виду. Наконец гусь вынимает оба крыла из несущих пазух, наклоняется для прыжка и расправляет крылья, после чего он взлетает — или нет. Дело в том, что описанный процесс постепенного нарастания летного возбуждения может быть остановлен и обращен в любом месте, при любой интенсивности достигнутого возбуждения. Я много раз видел, как гусь "низко склоняет колени" и широко раскрывает крылья, чтобы простоять несколько секунд в этой позе, напоминающей плохо набитое чучело, а затем снова выпрямиться.

По скорости нарастания возбуждения опытный наблюдатель может судить, взлетит гусь или нет. Если птица проходит в быстром темпе первые, низкопороговые движения, выражающие летное настроение, можно экстраполировать кривую их нарастания и предсказать, что возбуждение достигнет высшей степени. Если же кривая нарастания имеет тенденцию к уменьшению крутизны, то можно предсказать, что она вскоре "выйдет на плато", а затем опустится. По еще неизвестным причинам линия нарастания и убывания возбуждения, связанного со специфической активностью, никогда не образует острых углов; дело происходит так, как будто изменение интенсивности возбуждения обладает собственной инерцией.

Человек-наблюдатель при виде процессов этого рода часто впадает в нетерпение. Видя, как гусь в течение многих минут старается «раскачать» свое летательное возбуждение, наблюдатель испытывает такое же стремление как-то помочь бедной птице преодолеть порог раздражения, какое бывает, когда мы видим человека, мучительно пытающегося чихнуть и стремящегося достигнуть порога облегчающего взрыва всеми приемами, которые так превосходно изображает Вильгельм Буш.[78] Кто хорошо знает собак, тот не выносит популярной дрессировки "говорящая собака": в этом случае собаке навязывается движение, для нее не произвольное, пороговое значение которого достигается с мучительным трудом.

Среди движений перемещения такие редко используемые координации, как плавание морского конька и полет серого гуся, составляют исключение, поскольку у большинства животных движения перемещения готовы к употреблению в любой момент и в любом числе. Селезень кряквы не может выполнить "по первому требованию" одно из своих движений ухаживания, а петух не может запеть, точно так же, как человек не может по приказу чихнуть; но все они способны, если надо, в любое время и сразу же сделать шаг вперед. По понятным причинам необходимо, чтобы движение ходьбы было всегда доступно. И в этом, несомненно, состоит предпосылка и причина, по которой значительное большинство произвольных движений образовалось из того материала наследственных координации, который содержится в движении ходьбы. Когда животное "хочет чего-нибудь, но не может", у него почти всегда можно наблюдать движения ходьбы, или по крайней мере подготовку к ним или их части. Собака, жадно смотрящая на внесенную хозяином миску с едой, переступает с одной передней ноги на другую, лошадь подобным же образом скребет землю передним копытом и т. д. Понятно, что куски из координации ходьбы чаще всего служат составными частями выученных последовательностей поведения.

Как уже было сказано, проприоцепторные процессы, несомненно, играют роль при возникновении заученных движений, но не при совершенном выполнении вполне «заученного» движения. Было также упомянуто, что подлинно произвольное движение, т. е. действительно новое упорядочение произвольных элементов движения, выглядит крайне неловким. Очевидно, что контролирующие процессы реафференции требуют значительного времени.

Именно эти процессы обратного сообщения при выучивании форм движения играют решающую роль в построении центрального представления пространства, лежащего в основе всех высших форм понимающего поведения. Процессы обучения движению и приобретения знания посредством реафференции неразделимы и идут рука об руку. Вероятно, в филогенетическом смысле именно эффективность заученных движений, способствующая сохранению вида, произвела то селекционное давление, которое вызвало возникновение подлинных произвольных движений. Для очень многих позвоночных жизненно важны последовательности движений, приспособленные к весьма специальным пространственным условиям, не замедляемые задержками реакций и выполняемые с молниеносной быстротой. Но достаточно было небольшого смещения акцентов, какое должно было произойти при любознательном поведении высших животных и прежде всего при самоисследовании наших прямых предков, чтобы первостепенное значение для сохранения вида получило приобретение знаний. Способность, первоначально служившая лишь моторному умению, превращается теперь в важное средство исследования. У маленького человеческого ребенка исследовательская игра по меньшей мере столь же важна для приобретения и построения внутренней модели пространственного окружения, как и для освоения заучиваемых двигательных координации. Как показали исследования Т. Дж. Бауера и У. Болла, освоение пространства с помощью осязания — не единственное основание, на котором строится наше пространственное воображение. У младенца постоянство восприятия величин способно действовать задолго до всякого тактильного исследования пространства. Но для изучения особых пространственных форм различных предметов взаимодействие обучения движению с развитием внутреннего представления пространства имеет фундаментальное значение. Если бы произвольные движения, образующие любые формы из мельчайших моторных элементов, не способны были активно овладевать любым пространственным объектом — насколько это позволяет его величина, — то наше осязание не могло бы стать столь важным источником пространственного 'опыта, каким оно является.

Тесная связь между обеими функциями проявляется также в том, что тому органу нашего тела, который способен к наиболее утонченной произвольной моторике, — указательному пальцу — соответствует относительно наибольшее представление в задней центральной извилине нашего мозга, где находится его сенсорная область. Представление языка и губ в отведенной им области также поразительно велико, больше, чем соответствующее всей руке. Подобным образом обстоит дело и у шимпанзе. Без сомнения, у наших предков-млекопитающих рот и язык были важнейшими органами осязания, прежде чем у антропоидов эта роль перешла к руке. Примерно так же ведет себя маленький ребенок: как известно, сначала он засовывает все новое для исследования в рот. Но и у взрослого, как показывает самонаблюдение, ощупывание языком доставляет поразительно точные пространственные представления.

Рассмотренная функция произвольного движения, состоящая в получении информации о внешних условиях посредством реафференций, есть частный случай гораздо более общего принципа. Любое исследование, в сущности, всегда опирается на получение реафференций. Ту же функцию выполняет заученное движение, «подогнанное» к определенным пространственным условиям, но оно осуществляет это особенным образом. Именно в ходе процесса обучения, в котором движение, как было описано, составляется из малых моторных элементов, оно доставляет отображение своего предмета, составленное из столь же большого числа подробностей; и при каждом новом выполнении заученного движения эта внутренняя картина сравнивается с внешней действительностью посредством наложения. Каждое отклонение тотчас же сообщается обратно, принимается во внимание и исправляется. Это типичный случай основного акта познания, который мы уже знаем под именем "pattern matching" (с. 265).

Когда выполнение некоторого движения контролируется несколькими органами чувств, аналогичная функция осуществляется на более высоком уровне интеграции. Я уже говорил, какое значение имела определенная особенность, присущая лишь антропоидам, для возникновения самоисследования и тем самым размышления: лишь у этих животных хватающая рука действует в поле их собственного зрения, так что экстероцепторные сообщения органа зрения поступают одновременно с проприоцепторными восприятиями положения и движения конечностей, побуждая тем самым к акту познания — к "pattern matching". Когда маленький ребенок открывает собственные ноги и руки и начинает с ними исследовательскую игру, от этого не только удваивается число доставляющих информацию реафференций, но также становится отчетливо различимым их происхождение извне или изнутри.

Как уже неоднократно подчеркивалось, «взрослый» язык повседневного общения очень тонко чувствует глубокие психологические связи. Важность того, что человек приобретает знания активным исследованием, т. е. произвольными движениями, вызывающими обратную связь, отчетливее всего подчеркивается тем фактом, что в нашем языке прилагательное wirklich — действительный — есть сильнейшее выражение того, что само по себе существует или происходит. В английском языке ему соответствует слово "actual".[79]

 

 

В более общем смысле, и лишь с функциональной точки зрения, можно назвать «исследовательским» любое поведение, при котором организм нечто делает, чтобы нечто узнать. Тогда под это понятие подпали бы все виды моторной деятельности, обратные связи которых доставляют сенсорным путем приспособительную информацию. Это в самом деле происходит в рассмотренных на с. 325 и след. случаях, когда животное испытывает одну и ту же форму движения в разных ситуациях или на разных объектах; напомню пример ворона, узнающего таким способом подходящий материал для гнезда. Как следует еще раз подчеркнуть, мотивация этого рода поведения, состоящего из проб и ошибок, доставляется исключительно аппетенцией того же самого единственного инстинктивного движения!

Вероятно, именно из этого рода обучения, который можно представить себе так же, как "opérant conditioning"[80] в смысле бихевиористской школы, возникла в ходе эволюции гораздо более действенная форма исследования. Эта форма отличается от ранее описанной в двух существенных отношениях. Во-первых, вместо того чтобы применять на пробу к различным ситуациям и объектам одну и ту же наследственную координацию, здесь на одном и том же объекте испытываются одна за другой едва ли не все наследственные координации, находящиеся в распоряжении соответствующего вида животных. Во-вторых, мотивация, стимулирующая это поведение, не состоит уже в аппетенции по одному-единственному конечному движению, осуществляющему его цель и удовлетворяющему инстинктивное побуждение, а происходит из другого источника, обладающего замечательной способностью активировать многие, может быть даже все, наследственные координации, свойственные данному виду. Этот вид приобретения знания, особые свойства которого впервые ясно осознала Моника Мейер-Гольцапфель, мы называем исследовательским, или любознательным, поведением.

В играх высших млекопитающих и птиц непосредственно видно, что мотивация выполняемых при этом разнообразных, быстро сменяющих друг друга инстинктивных движений, безусловно, не может исходить из тех же источников стимулов, которые питают ее в серьезном случае. Например, в игре котенка движения, происходящие из круга функций, связанных с ловлей добычи, конкурентной борьбой и защитой от более крупных хищников, сменяют друг друга в течение нескольких секунд. Но кошка, вынужденная при встрече с угрожающим хищником,[81] например большой собакой, занять известную защитную позу угрозы с выгнутой спиной, после этого в течение многих минут, даже десятков минут, не может успокоиться настолько, чтобы вообще быть способной к какому-нибудь другому настроению, например к настроению ловли добычи или конкурентной борьбы. Между тем в игре отдельные движения, относящиеся к различным установкам, сменяют друг друга беспорядочно и без перерывов. Это, как я полагаю, заставляет нас согласиться с заключением Моники Мейер-Гольцапфель, что входящие в игру наследственные координации питаются из другого источника мотиваций, чем те, которые активируют их в случаях, связанных с сохранением вида.

Трудно сказать, происходит ли то, что мы обычно называем «игрой» молодого животного, из исследовательского поведения в более узком смысле, которое мы сейчас рассмотрим, или же наоборот. Существуют все мыслимые переходы и промежуточные ступени между этими процессами. Исследовательский характер проявляется тем отчетливее, чем больше различных форм поведения пробуется на одном и том же  объекте или в одной и той же ситуации. Например, когда молодому ворону предлагают совершенно неизвестный ему предмет подходящей величины, он реагирует на него сначала теми формами движения, которыми опытная взрослая птица «ненавидит» хищника. Он приближается к предмету осторожно, сбоку, вприпрыжку и наконец наносит по нему сильный удар клювом, после чего обращается в бегство. Если нарисовать на одном конце продолговатого предмета два пятна, грубо имитирующих глаза, то ворон направит свой удар клювом в противоположный конец. Если предмет не реагирует преследованием — как это сделал бы хищник большего размера, — то ворон в свою очередь переходит в атаку примерно таким образом, как он приближался бы в серьезном случае к вполне способной защищаться добыче. При этом он всегда клюет ее в «голову» или в глаза. Если оказывается, что предмет "уже мертв", то птица начинает всеми подходящими инстинктивными движениями измельчать его, одновременно испытывая на съедобность. Наконец, она прячет обломки. Позже, когда объект становится вполне безразличным, она время от времени использует их, чтобы прятать среди них другие, более интересные вещи или сидеть на более крупных из них.

К этому процессу в точности подходит высказывание Арнольда Гелена об исследовательском поведении: предмет становится после изучения "близко знакомым", а затем откладывается "ad acta"[82] в том смысле, что животное в случае надобности может тотчас же «обратиться» к этому знанию.

До возникновения такой надобности по наблюдаемому поведению животного не заметно, что в своем любознательном поведении оно чему-то научилось. Когда, например, серая крыса,[83] выполнив процесс исследования, по существу аналогичный описанному выше поведению ворона, пробежит, обшарит и облазит всевозможные пути в своей области деятельности, то она в точности знает, какой путь ведет из любой точки этой области к ближайшему укрытию и насколько это укрытие надежно. Но это обширное знание проявляется лишь в том случае, если в соответствующей точке на крысу подействует сильный ключевой стимул, вызывающий бегство. До этого момента все выученное остается скрытым; поэтому говорят о "латентном обучении", хотя, как видно из предыдущего, самый процесс обучения очевиден и лишь приобретенное им «знание» латентно, да и то лишь до тех пор, когда оно понадобится.

Подобно формам движений, участвующим в игре, формы движений, свойственные любознательному поведению, активируются не теми установками, которым они подчинены в других случаях. Как и при игре, движения, выражающие различные установки, следуют при этом друг за другом гораздо быстрее, чем могли бы сменяться соответствующие установки в серьезном случае; но можно и другим способом показать, что в их основе лежит особая общая мотивация: именно, исследование тотчас же угасает, как только вводится в действие какая-нибудь иная установка, отличная от специфической "установки любознательности". В нашем примере мы наблюдаем у исследующего ворона движения бегства, ловли добычи, еды и т. д., но он тотчас же прекращает все это, когда у него начинает действовать подлинная установка бегства, подлинное побуждение к охоте или подлинное чувство голода. Когда исследующий ворон начинает испытывать голод, он направляется к известному источнику пищи или выпрашивает ее у служителя; иными словами, "в серьезном случае" он возвращается к предметам и формам поведения, способным, как он уже знает, утолить голод. Густав Балли впервые отчетливо установил, что игра может происходить лишь "в ненапряженном поле", как он это выразил в терминах теории поля Курта Левина.

Правильно понял сущность исследовательского поведения Арнольд Гелен. Как он говорит, это поведение "состоит из «сенсомоторных» последовательностей движений, соединенных со зрительными и осязательными ощущениями и образующих круговые процессы, которые сами производят стимулы для своего продолжения. Они выполняются без чувственного побуждения и не имеют какого-либо непосредственного значения для удовлетворения инстинкта… Это продуктивное взаимоотношение (с условиями окружающей среды) является в то же время объективным (sächliches) . Вряд ли можно лучше описать особый характер исследовательского поведения и охарактеризовать его отличие от обычных процессов оперантного приобретения условных реакций, рассмотренных в предыдущих разделах этой главы. Об этих процессах Гелен говорит: "Процессы обучения побуждаются лишь ситуационным давлением наличного инстинктивного стимула, так что животное действует, по существу, зависимым образом… При этом оно не придает своему действию какой-либо самостоятельности, так что его поведение не объективно". Однако в книге, откуда взята эта цитата, Гелен допускает ошибку (впрочем, исправленную впоследствии им самим), приписывая объективно исследовательское любознательное поведение исключительно человеку. Поэтому мне хотелось бы еще раз подчеркнуть, что подлинное исследовательское поведение вполне объективно: ворон, изучающий некоторый предмет, не хочет есть, а крыса, лазящая по всем закоулкам в своей области, не хочет спрятаться; они хотят знать, съедобен ли β принципе — хотелось бы сказать, «теоретически» — соответствующий предмет, можно ли использовать его как убежище. Якоб фон Юкскюль сказал однажды, что в мире, окружающем животных, все вещи — действенные вещи. В особом смысле таковы все предметы в окружении любознательных существ, ранее близко изученные ими, а затем отложенные ad acta. Несомненно, они «объективированы» в некотором ином, высшем смысле, так как знание о возможном способе их использования приобретается и хранится независимо от ситуационного давления изменчивых инстинктивных побуждений.

Понятно, что живые существа, которые в состоянии изучать свойства различных предметов своего окружения, особенно способны к приспособлению. Обращаясь с каждым неизвестным предметом, как если бы он был биологически важен, они в действительности обнаруживают все предметы, имеющие такое значение. Опираясь на эту функцию, ворон, например, в состоянии существовать в разных биотопах, как если бы он был специально приспособлен к любому из них. В пустынях Северной Африки он живет как коршун-стервятник, питаясь падалью; на птичьих базарах Северного моря он ведет образ жизни поморника, пожирая яйца и птенцов, а в Центральной Европе перебивается, подобно вороне, охотой на мелких животных.

Филогенетические программы таких любознательных животных всегда в высшей степени «открыты» — если обозначить их термином, который ввел в употребление Эрнст Майр. Действенные предметы (Aktionsdinge), из которых строится их внешний мир, не определяются свойственными виду врожденными механизмами запуска, содержащими нужные признаки и информацию, а находятся объективирующим исследованием. "Открытость по отношению к миру", которую Арнольд Гелен считает свойством, отделяющим человека от животного, имеется, по существу, в том же смысле и у типичных любознательных животных, хотя у них она менее развита и не интегрирована вместе с другими указанными в этой главе предпосылками мышления в единую систему высшего порядка.

Программа поведения, модифицируемая в столь широких пределах, как у рассматриваемых любознательных животных, требует моторики, допускающей многообразные применения. Аналогичные требования предъявляются к используемым органам. Высокая морфологическая специализация органов исключает их многостороннюю применимость. Поэтому все типичные любознательные животные в морфологическом отношении являются относительно малоспециализированными представителями своих таксономических[84] групп. Они, по моему излюбленному выражению, "специалисты по неспециализированности". Таковы, например, крысы среди грызунов, вороны среди певчих птиц и, наконец, человек среди приматов. Характерно, что среди высших животных лишь такие специалисты по неспециализированности могут стать космополитами. Конечно, крыса или человек способны к относительно меньшим физическим достижениям, чем животные, высокоспециализированные в соответствующем отношении; но оба они превосходят своих ближайших зоологических родичей в многообразии моторного умения. Человек мог бы вызвать весь класс млекопитающих на спортивное соревнование, рассчитанное на многосторонние результаты, где требовалось бы, например, пройти 30 км, переплыть водное препятствие шириной в 15 м. нырнув на глубину в 5 м и достав при этом пару определенных предметов, а затем подняться на несколько метров по канату (все это может сделать любой обыкновенный человек); и оказалось бы, что нет ни одного млекопитающего, способного подражать ему в этих трех упражнениях. Если взять вместо каната дерево, то с человеком мог бы состязаться белый медведь,[85] а если несколько уменьшить глубину ныряния и длину пешеходного маршрута, то с ним сравнялись бы многие макаки. Но только крыса могла бы успешно с ним конкурировать, если бы в соответствии с размерами ее тела все расстояния были сокращены.

Размышляя о последствиях любознательного поведения, и прежде всего о важности этого поведения для возникновения понятийного мышления, можно удивиться видимой незначительности тех изменений и интеграции ранее существовавших систем, которые привели к столь глубокому перевороту. Чтобы могло возникнуть исследовательское поведение, не понадобилось существенного изменения функций какого-либо из известных механизмов, участвовавших в качестве подсистем в приобретении условных реакций, и ни один из них не оказался лишним. Новое «изобретение» состояло лишь в таком обобщении аппетентного поведения, что целью его стала не ситуация запуска определенного завершающего действия, удовлетворяющего инстинктивное побуждение, а ситуация обучения сама по себе. Для достижения этого потребовалось, собственно, лишь некоторое смещение акцента, так как почти все аппетентное поведение высших, способных к обучению животных так или иначе идет рука об руку с обучением, с приобретением условных реакций. Так обстоит дело уже в процессах, описанных на с. 325 и далее, когда информация замкнута в форме наследственной координации, а характер подходящего объекта усваивается методом проб и ошибок. Качественно новая особенность состоит в том, что мотивацию доставляет самый процесс обучения, а не проведение завершающего действия.

С этим на первый взгляд столь малым шагом выступает на сцену совершенно новое когнитивное явление, в принципе тождественное с исследовательской деятельностью человека и ведущее, без изменения его сущности, к научному исследованию природы. В ходе этого развития взаимосвязь между игрой и исследованием остается столь же тесной, полностью сохраняясь также у взрослого человека-исследователя, между тем как у животных эта связь с возрастом исчезает. "Человек лишь тогда вполне человек, когда он играет", — говорит Фридрих Шиллер, а Фридрих Ницше говорит, что "в истинном мужчине спрятан ребенок", на что моя жена отвечает вопросом: "Так ли уж спрятан?"

Как я уже подробно объяснил в другом месте, замедление развития человека в юности, которое Больк назвал ретардацией, а также остановка развития на юношеской стадии, так называемая неотения, являются предпосылкой того, что у человека, в отличие от большинства животных, любознательное поведение с возрастом не исчезает, а определяющая его сущность открытость по отношению к миру сохраняется в нем, пока глубокая старость не положит ей предел.

Так же как восприятие образов, возникшее с целью простого узнавания неизменности вещей, оказалось способным абстрагировать сверхиндивидуальные закономерности, присущие множеству отдельных предметов (с. 348), любознательное исследование создало без существенного изменения лежащих в его основе механизмов новую функцию, в зародыше имеющуюся уже у наших ближайших зоологических родичей, но лишь у человека ставшую важной, даже определяющей особенностью, — способность к самоисследованию.

Можно задаться вопросом, когда и каким образом наши предки осознали свое собственное существование. Трудно себе представить чтобы существо, у которого любознательное поведение было одной из важнейших функций для сохранения вида, рано или поздно не открыло свое собственное тело как заслуживающий исследования объект. То, что этот решающий шаг сделали именно антропоиды, связано с уже известными нам обстоятельствами. Поскольку они передвигались по деревьям, хватаясь руками за ветви, у них высоко развились понимание пространства и способность его центрального представления, а также способность к произвольному движению. Сверх того, при их особом способе движения хватающая рука постоянно действует в поле зрения животного. Это как раз и не происходит у большинства млекопитающих, включая многих обезьян. Собака ступает передней лапой на место, которое она только что, за доли секунды до этого, видела, но при ее перемещении собственное тело не попадает в ее поле зрения; примерно так же обстоит дело у мартышек, макак и павианов. Напротив, осторожно передвигающаяся по дереву человекообразная обезьяна почти все время видит свою руку вместе с предметом, который она намерена схватить, особенно тогда, когда захват производится не с целью перемещения, а для исследования. Как показал Г. Миттельштедт в своем известном опыте, даже у человека направление, в котором он показывает рукой, все время контролируется и корректируется обратными сообщениями о положении конечности, которое наши глаза устанавливают намного точнее, чем это способны делать проприоцепторы нашего чувства глубины. Насколько мне известно, с человекообразными обезьянами подобный опыт еще не был поставлен. Однажды я видел, как шимпанзе, лежа на спине, прикрывал свет электрической лампочки осторожными легкими движениями руки, пропуская его то в один, то в другой глаз. Складывалось впечатление, что он исследовал результаты собственного движения. Как бы то ни было, человекообразные обезьяны — единственные известные животные, у которых передняя конечность, важнейший орган любознательного поведения, оказывается в поле зрения одновременно с изучаемым предметом. Это дает им возможность наблюдать взаимодействие того и другого. Дальнейшую важную возможность открыть взаимодействие между собственным телом и исследуемым предметом доставляет общественная игра. Эта деятельность занимает у молодых обезьян весьма значительную часть их активного дня, причем «диалогическая» функция, присущая любой исследовательской игре, приводит к диалогу в более узком и высшем смысле: при любом исследовании объекту задается вопрос и регистрируется его «ответ». Когда два молодых любознательных шимпанзе играют друг с другом, это взаимодействие удваивается. Когда одна из обезьян держит руку другой в своих руках и внимательно изучает ее, как это нередко можно видеть у молодых шимпанзе, то есть все условия для решающего открытия, что собственная рука имеет ту же природу, как рука собрата. Мне кажется весьма вероятным, что вещественность собственного тела была открыта именно тогда, когда человекообразная обезьяна увидела его в зеркальном изображении, рассматривая своего собрата по игре.

Конечно, открытие собственного тела, и прежде всего собственной руки, как возможного предмета исследования в ряду многих других, еще никоим образом не означало подлинного размышления. И оно не пробудило еще того удивления самим собой, которое считается началом философствования. Но одно лишь постижение того факта, что собственное тело или собственная рука тоже является «вещью» внешнего мира с точно такими же постоянными отличительными свойствами, как и всякая другая вещь окружающей среды, должно было иметь глубочайшее, поистине эпохальное значение. С постижением вещественной природы собственного тела и его действующих органов неизбежно возникает новое, более глубокое понимание взаимодействий, происходящих между организмом и предметами его окружения. Постижение собственного тела в его предметном постоянстве делает его сравнимым со всеми другими вещами окружающего мира и тем самым мерой этих вещей.[86]

Таким образом и открылся организму, в подлинной фульгурации, новый уровень объективирования окружающего мира: в то мгновение, когда наш предок впервые одновременно осознал собственную хватающую руку и схваченный ею предмет как вещи реального внешнего мира и постиг взаимодействие между ними, его постижение процесса схватывания стало пониманием, а его знание о существенных свойствах схваченной вещи стало понятием.[87] Разумеется, только что описанный процесс находится в тесной взаимосвязи с другими рассмотренными в этой главе функциями, составляющими его предпосылки. Так, например, рассмотренная в первом разделе абстрагирующая функция восприятия служит предпосылкой того, что организм узнает исследуемый предмет в самых различных условиях как один и тот же объект. Необходимой предпосылкой самоисследования является также центральное представление пространства со всеми составляющими его функциями, и прежде всего такой неистощимый источник знания, как реафференции, доставляемые произвольными движениями.

 



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 5; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.200.167 (0.029 с.)