Метод, основанный на номинальной кривизне
Содержание книги
- Рисунок 3.8 — Идеализированная (А) и расчетная (В) диаграммы
- Рисунок 3.9 — Диаграмма «напряжение — относительная деформация»
- для типичной напрягаемой стали (абсолютные значения показывают
- Рисунок 3.10 — Идеализированная (А) и расчетная (В) диаграммы
- Анкерные устройства и зоны анкеровки
- Таблица 4.1 — Классы условий эксплуатации, соответствующие условиям окружающей среды согласно EN 206-1
- Коррозия, вызванная хлоридами. Окончание таблицы 4.1. Коррозия, вызванная хлоридами морской воды. Воздействие попеременного замораживания и оттаивания
- Таблица 4.2 — Минимальная толщина слоя cmin,b, требования к обеспечению сцепления бетона с арматурой
- Таблица 4.3N — Рекомендуемая классификация конструкций
- Допустимые отклонения при проектировании
- Специальные требования для фундаментов
- Случаи нагружения и сочетания воздействий
- Рисунок 5.1 — Примеры воздействия геометрических несовершенств
- Эффективная ширина полок (все предельные состояния)
- c — опора с полным защемлением;
- Линейно-упругий расчет с ограниченным перераспределением
- Пластический расчет балок, рам и плит
- Рисунок 5.5 — Угол пластического поворота qs для армированных поперечных сечений
- поперечных сечений железобетона для классов арматуры В и С.
- Расчет эффектов второго порядка при осевой нагрузке
- Упрощенный критерий для эффектов второго порядка
- Гибкость и расчетная длина для отдельных элементов
- Общий эффект второго порядка в зданиях
- Метод, основанный на номинальной жесткости
- Коэффициент увеличения момента
- Метод, основанный на номинальной кривизне
- Боковая (поперечная) неустойчивость гибких балок
- Предварительно напряженные элементы и конструкции
- Усилие предварительного напряжения во время напряжения
- Усилие предварительного напряжения
- Прямые (первые) потери усилия предварительного напряжения при предварительном натяжении
- Таблица 5.1 — Коэффициенты трения m для пост-натягиваемых напрягающих элементов, располагаемых в конструкции, и внешних напрягающих элементов без сцепления
- Потери от проскальзывания в анкерном устройстве
- Учет предварительного напряжения в расчете
- Влияние предварительного напряжения в предельном состоянии по эксплуатационной пригодности и предельном состоянии по усталости
- Предельные состояния по несущей способности (ULS)
- Рисунок 6.1 — Возможное распределение относительных деформаций
- Элементы, не требующие по расчету поперечной арматуры
- а — для балки с непосредственной опорой;
- Рисунок 6.5 — Ферменная модель и обозначения для элементов с поперечной арматурой
- Рисунок 6.6 — Поперечная арматура при коротких пролетах среза
- Срез по контакту между бетонами, укладываемыми в различное время
- Рисунок 6.8 — Примеры контактов
- Рисунок 6.10 — Диаграмма поперечного усилия
- Рисунок 6.11 — Используемые в 6.3 обозначения и определения
- Рисунок 6.12 — Модель расчета на продавливание
- Распределение нагрузки и основной контрольный периметр
- Рисунок 6.13 — Типичные основные контрольные периметры
- Таблица 6.1 — Значения k прямоугольных площадей приложения нагрузки
- Рисунок 6.19 — Распределение поперечного усилия при неуравновешенном моменте
5.8.8 Метод, основанный на номинальной кривизне
5.8.8.1 Общие положения
(1) Данный метод применяется, прежде всего, для отдельно стоящих элементов с постоянной продольной силой и определенной расчетной длиной l0 (см. 5.8.3.2). Метод определяет номинальный момент с учетом эффектов второго порядка, на основе перемещения, которое, в свою очередь, получено на основе расчетной длины и рассчитанной максимальной кривизны (см. также 5.8.5 (3)).
(2) Полученный расчетный момент применяется для расчета поперечных сечений при действии изгиба с продольной силой согласно 6.1.
5.8.8.2 Изгибающие моменты
(1) Расчетный момент
(5.31)
где M0Ed — момент с учетом эффектов первого порядка, включая влияние несовершенств, см. также 5.8.8.2 (2);
М2 — номинальный момент с учетом эффектов второго порядка, см. также 5.8.8.2 (3).
Максимальное значение MEd рассчитывается из распределения и причем последнее может быть принято параболическим или синусоидальным вдоль расчетной длины.
Примечание — Для статически неопределимых элементов конструкции определяется для фактических краевых условий, причем зависит от краевых условий по расчетной длине; сравни с 5.8.8.1 (1).
(2) Для элементов без нагрузок, приложенных между концами элементов, различающие концевые изгибающие моменты с учетом эффектов первого порядка, M01 и М02, могут быть заменены эквивалентным моментом с учетом эффектов первого порядка, М0е.
(5.32)
M01 и М02 имеют те же знаки, если они вызывают растяжение на одной и той же стороне, в противном случае они имеют противоположные знаки. Кроме этого, |M02| ³ |М01|.
(3) Номинальный расчетный момент с учетом эффекта второго порядка, М2, в формуле (5.31) составляет:
(5.33)
где NEd — расчетное значение продольного усилия;
е2 — перемещение, определяемое (1/r) · l02/c;
1/r — кривизна, см. 5.8.8.3;
l0 — расчетная длина, см. 5.8.3.2;
с — коэффициент, который зависит от распределения кривизны, см. 5.8.8.2 (4).
(4) При постоянном поперечном сечении обычно используется с = 10 (≈p2). Если момент с учетом эффектов первого порядка является постоянным, то, как правило, необходимо проверять меньшее значение (8 — это нижнее предельное значение, которое соответствует постоянному общему моменту).
Примечание — Значение p2 соответствует синусоидальному распределению кривизны. Значение для постоянной кривизны — 8. Необходимо обратить внимание на то, что с зависит от вида общей кривизны, в то время как с0, согласно 5.8.7.3 (2), зависит от кривизны, соответствующей моменту с учетом эффектов первого порядка.
|