Расчет эффектов второго порядка при осевой нагрузке
Содержание книги
- Рисунок 3.2 — График зависимости «напряжение — относительная деформация»
- Рисунок 3.3 — Параболически-прямоугольная диаграмма для бетона при сжатии
- Рисунок 3.6 — Зависимость между напряжением и относительной деформацией
- при многоосном сжатии (бетон с ограничением поперечных деформаций)
- Характеристики пластичности (деформативности)
- Рисунок 3.7 — Диаграммы «напряжение — относительная деформация»
- Рисунок 3.8 — Идеализированная (А) и расчетная (В) диаграммы
- Рисунок 3.9 — Диаграмма «напряжение — относительная деформация»
- для типичной напрягаемой стали (абсолютные значения показывают
- Рисунок 3.10 — Идеализированная (А) и расчетная (В) диаграммы
- Анкерные устройства и зоны анкеровки
- Таблица 4.1 — Классы условий эксплуатации, соответствующие условиям окружающей среды согласно EN 206-1
- Коррозия, вызванная хлоридами. Окончание таблицы 4.1. Коррозия, вызванная хлоридами морской воды. Воздействие попеременного замораживания и оттаивания
- Таблица 4.2 — Минимальная толщина слоя cmin,b, требования к обеспечению сцепления бетона с арматурой
- Таблица 4.3N — Рекомендуемая классификация конструкций
- Допустимые отклонения при проектировании
- Специальные требования для фундаментов
- Случаи нагружения и сочетания воздействий
- Рисунок 5.1 — Примеры воздействия геометрических несовершенств
- Эффективная ширина полок (все предельные состояния)
- c — опора с полным защемлением;
- Линейно-упругий расчет с ограниченным перераспределением
- Пластический расчет балок, рам и плит
- Рисунок 5.5 — Угол пластического поворота qs для армированных поперечных сечений
- поперечных сечений железобетона для классов арматуры В и С.
- Расчет эффектов второго порядка при осевой нагрузке
- Упрощенный критерий для эффектов второго порядка
- Гибкость и расчетная длина для отдельных элементов
- Общий эффект второго порядка в зданиях
- Метод, основанный на номинальной жесткости
- Коэффициент увеличения момента
- Метод, основанный на номинальной кривизне
- Боковая (поперечная) неустойчивость гибких балок
- Предварительно напряженные элементы и конструкции
- Усилие предварительного напряжения во время напряжения
- Усилие предварительного напряжения
- Прямые (первые) потери усилия предварительного напряжения при предварительном натяжении
- Таблица 5.1 — Коэффициенты трения m для пост-натягиваемых напрягающих элементов, располагаемых в конструкции, и внешних напрягающих элементов без сцепления
- Потери от проскальзывания в анкерном устройстве
- Учет предварительного напряжения в расчете
- Влияние предварительного напряжения в предельном состоянии по эксплуатационной пригодности и предельном состоянии по усталости
- Предельные состояния по несущей способности (ULS)
- Рисунок 6.1 — Возможное распределение относительных деформаций
- Элементы, не требующие по расчету поперечной арматуры
- а — для балки с непосредственной опорой;
- Рисунок 6.5 — Ферменная модель и обозначения для элементов с поперечной арматурой
- Рисунок 6.6 — Поперечная арматура при коротких пролетах среза
- Срез по контакту между бетонами, укладываемыми в различное время
- Рисунок 6.8 — Примеры контактов
- Рисунок 6.10 — Диаграмма поперечного усилия
5.7 Нелинейный расчет
(1)P Нелинейные методы расчета используются для проверки предельных состояний по несущей способности и эксплуатационной пригодности, при обеспечении условий равновесия и совместности деформаций с учетом нелинейного поведения материалов. Расчет производится по теории первого или второго порядка.
(2) В предельном состоянии по несущей способности, как правило, следует проверить расчетом способность местных критических сечений к устойчивому восприятию любых неупругих деформаций, учтенных в расчете, принимая во внимание несовершенства.
(3) Для конструкций, преимущественно нагруженных статическими нагрузками, в общем случае, влияние предшествующих приложенных нагрузок может не учитываться и принимается монотонное увеличение интенсивности воздействий.
(4)P При нелинейном расчете должны применяться такие характеристики материалов, которые отражают реальную жесткость и учитывают погрешности разрушения. Следует применять только такие методы проектирования, которые отвечают основным областям применения.
(5) Для гибких конструкций, в которых нельзя пренебрегать воздействиями второго порядка, используется метод по 5.8.6.
5.8 Расчет эффектов второго порядка при осевой нагрузке
5.8.1 Определения
Двухосный изгиб: одновременный изгиб вдоль двух главных осей.
Раскрепленные элементы или системы: конструктивные элементы или подсистемы, для которых при расчете и проектировании принято, что они не способствуют общей горизонтальной устойчивости конструкции.
Раскрепляющие элементы или системы: конструктивные элементы или подсистемы, для которых при расчете и проектировании принято, что они способствуют общей горизонтальной устойчивости конструкции.
Потеря устойчивости при продольном изгибе: разрушение вследствие неустойчивости элемента или конструкции при действии преимущественно продольной силы без поперечной нагрузки.
Примечание — Определенная выше как «Чистая потеря устойчивости при продольном изгибе» в реальных несущих конструкциях не является определяющим предельным состоянием, поскольку одновременно учитываются несовершенства и поперечные нагрузки, но номинальная критическая нагрузка может использоваться как параметр в некоторых методах для расчета эффектов второго порядка.
Критическая продольная нагрузка: нагрузка, при которой происходит потеря устойчивости при продольном изгибе; для отдельных упругих элементов она является синонимом нагрузки Эйлера.
Расчетная длина: длина, используемая для учета формы кривой перемещений. Она также может быть определена как длина зоны продольного изгиба, т. е. длина шарнирно закрепленной по концам колонны с постоянной продольной силой, которая имеет такие же поперечные сечения и критическую продольную нагрузку, как фактический элемент.
Эффекты первого порядка: эффекты от воздействия, которые рассчитываются без учета влияния деформации конструкции, но с учетом геометрических несовершенств.
Отдельные (отдельно стоящие) элементы: элементы, которые действительно расположены отдельно, или элементы конструкции, которые в процессе расчета рассматриваются как отдельно стоящие. Примеры отдельных элементов с различными граничными условиями приведены на рисунке 5.7.
Номинальный момент с учетом эффектов второго порядка: момент с учетом эффектов второго порядка, который используется в определенных методах расчета, дающий общий момент, отвечающий предельному сопротивлению поперечного сечения, см. также 5.8.5 (2).
Эффекты второго порядка: дополнительные эффекты от воздействия, обусловленные деформацией конструкции.
|