Боковая (поперечная) неустойчивость гибких балок 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Боковая (поперечная) неустойчивость гибких балок

Поиск

5.8.8.3 Кривизна

(1) Для элементов с постоянными симметричными сечениями (включая арматуру) применяется следующая формула:

,                                                                      (5.34)

где Kr — корректирующий коэффициент, зависящий от продольной нагрузки, см. 5.8.8.3 (3);

Кj — коэффициент, учитывающий влияние ползучести, см. 5.8.8.3 (4);

,

здесь ;

d — полезная высота, см. 5.8.8.3 (2).

(2) Если вся арматура не сконцентрирована у противоположных сторон, а частично распределена параллельно плоскости изгиба, то d определяется по формуле

                                                                           (5.35)

При этом is — радиус инерции площади всей арматуры.

(3) Kr в формуле (5.34) следует принимать следующим образом:

,                                                                (5.36)

где — относительное продольное усилие;

здесь NEd — расчетное значение продольного усилия;

nbal         — значение n при максимальном сопротивлении изгибу; допускается принимать равным 0,4;

,

где As — общая площадь сечения арматуры;

Ас — общая площадь сечения бетона.

(4) Влияние ползучести следует учитывать коэффициентом

                                                                (5.37)

где jef — эффективный коэффициент ползучести, см. 5.8.4;

;

l — гибкость, см. 5.8.3.1.

5.8.9 Двухосный изгиб

(1) Общий метод, описанный в 5.8.6, может быть также использован для двухосного изгиба. Следующие правила действительны, когда применяются упрощенные методы. Особое внимание необходимо уделить нахождению сечения элемента с критической комбинацией моментов.

(2) В качестве первого шага необходимо произвести раздельный расчет в направлениях обеих главных осей, без учета двухосного изгиба. Несовершенства необходимо учитывать только в направлении, в котором они больше всего приводят к самым неблагоприятным воздействиям.

(3) Не требуется никакой дальнейшей проверки, если для гибкости выполняются следующие условия:

и                                                                            (5.38а)

и если относительный эксцентриситет ey/h и ez/b (рисунок 5.8), удовлетворяет одному из условий:

 или                                            (5.38b)

где b, h         — ширина и высота сечения;

 и

— для эквивалентного прямоугольного сечения,

здесь iy, iz — радиусы инерции соответственно относительно оси y и оси z;

lу, lz    — гибкость l0/i соответственно относительно оси y и оси z;

— эксцентриситет нагрузки в направлении оси z;

— эксцентриситет нагрузки в направлении оси у,

здесь MEdy — расчетное значение момента относительно оси y, включая моменты с учетом эффекта второго порядка;

MEdz — расчетное значение момента относительно оси z, включая моменты с учетом эффекта второго порядка;

NEd — расчетное значение продольного усилия для соответствующего сочетания нагрузок.

Рисунок 5.8 — Определение эксцентриситетовey и ez

(4) Если не выполняются условия (5.38), то необходимо учитывать двухосный изгиб, включая влияние эффектов второго порядка в обоих направлениях (если ими нельзя пренебречь согласно 5.8.2 (6) или 5.8.3). При отсутствии более точного расчета сечений при двухосном изгибе может быть использован следующий упрощенный критерий:

                                                      (5.39)

где MEdz/y — расчетный момент относительно соответствующей оси, включая момент от эффектов второго порядка;

MRdz/y — предельный момент в соответствующем направлении;

a    — показатель степени:

для круглых и эллиптических сечений а = 2;

 

для прямоугольных сечений:

NEd/NRd

0,1

0,7

1,0

a

1,0

1,5

2,0

для промежуточных значений допускается линейная интерполяция,

здесь NEd — расчетное значение продольной силы;

NRd = Acfcd + Asfyd  — расчетное значение сопротивления сечения продольной силе,

Ac — площадь брутто бетонного сечения;

As — площадь продольной арматуры.

(1)Р При определенных обстоятельствах необходимо учитывать боковую неустойчивость гибких балок, например, для сборных балок при транспортировке и монтаже, для балок без достаточного бокового раскрепления в готовой конструкции и т. д. Геометрические несовершенства должны быть учтены в расчете.

(2) При расчете балок в нераскрепленных условиях боковое перемещение l/300 необходимо принять как геометрическое несовершенство, причем l — общая длина балки. В готовых конструкциях может быть учтено раскрепление присоединенными элементами.

(3) Влияние эффектов второго порядка в отношении боковой неустойчивости может не учитываться, если будут выполнены следующие условия:

— для постоянных ситуаций       и h/b £ 2,5;                                                 (5.40а)

— для переходных ситуаций      и h/b £ 3,5,                                                (5.40b)

где l0t — расстояние между раскреплениями от кручения;

Н — общая высота балки в центральной части пролета l0t;

В — ширина сжатой полки.

(4) Кручение, связанное с боковой неустойчивостью, необходимо учитывать при расчете поддерживающей конструкции.



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 5; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.92.6 (0.01 с.)