Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
поперечных сечений железобетона для классов арматуры В и С.
Содержание книги
- Таблица 3.3 — Значения kh в формуле (3.9)
- Рисунок 3.2 — График зависимости «напряжение — относительная деформация»
- Рисунок 3.3 — Параболически-прямоугольная диаграмма для бетона при сжатии
- Рисунок 3.6 — Зависимость между напряжением и относительной деформацией
- при многоосном сжатии (бетон с ограничением поперечных деформаций)
- Характеристики пластичности (деформативности)
- Рисунок 3.7 — Диаграммы «напряжение — относительная деформация»
- Рисунок 3.8 — Идеализированная (А) и расчетная (В) диаграммы
- Рисунок 3.9 — Диаграмма «напряжение — относительная деформация»
- для типичной напрягаемой стали (абсолютные значения показывают
- Рисунок 3.10 — Идеализированная (А) и расчетная (В) диаграммы
- Анкерные устройства и зоны анкеровки
- Таблица 4.1 — Классы условий эксплуатации, соответствующие условиям окружающей среды согласно EN 206-1
- Коррозия, вызванная хлоридами. Окончание таблицы 4.1. Коррозия, вызванная хлоридами морской воды. Воздействие попеременного замораживания и оттаивания
- Таблица 4.2 — Минимальная толщина слоя cmin,b, требования к обеспечению сцепления бетона с арматурой
- Таблица 4.3N — Рекомендуемая классификация конструкций
- Допустимые отклонения при проектировании
- Специальные требования для фундаментов
- Случаи нагружения и сочетания воздействий
- Рисунок 5.1 — Примеры воздействия геометрических несовершенств
- Эффективная ширина полок (все предельные состояния)
- c — опора с полным защемлением;
- Линейно-упругий расчет с ограниченным перераспределением
- Пластический расчет балок, рам и плит
- Рисунок 5.5 — Угол пластического поворота qs для армированных поперечных сечений
- поперечных сечений железобетона для классов арматуры В и С.
- Расчет эффектов второго порядка при осевой нагрузке
- Упрощенный критерий для эффектов второго порядка
- Гибкость и расчетная длина для отдельных элементов
- Общий эффект второго порядка в зданиях
- Метод, основанный на номинальной жесткости
- Коэффициент увеличения момента
- Метод, основанный на номинальной кривизне
- Боковая (поперечная) неустойчивость гибких балок
- Предварительно напряженные элементы и конструкции
- Усилие предварительного напряжения во время напряжения
- Усилие предварительного напряжения
- Прямые (первые) потери усилия предварительного напряжения при предварительном натяжении
- Таблица 5.1 — Коэффициенты трения m для пост-натягиваемых напрягающих элементов, располагаемых в конструкции, и внешних напрягающих элементов без сцепления
- Потери от проскальзывания в анкерном устройстве
- Учет предварительного напряжения в расчете
- Влияние предварительного напряжения в предельном состоянии по эксплуатационной пригодности и предельном состоянии по усталости
- Предельные состояния по несущей способности (ULS)
- Рисунок 6.1 — Возможное распределение относительных деформаций
- Элементы, не требующие по расчету поперечной арматуры
- а — для балки с непосредственной опорой;
- Рисунок 6.5 — Ферменная модель и обозначения для элементов с поперечной арматурой
- Рисунок 6.6 — Поперечная арматура при коротких пролетах среза
- Срез по контакту между бетонами, укладываемыми в различное время
- Рисунок 6.8 — Примеры контактов
поперечных сечений железобетона для классов арматуры В и С.
Значения применимы для поперечной гибкости l = 3,0
5.6.4 Расчет по моделям «распорок и тяжей»
(1) Модели «распорки и тяжи» используются при проверке предельного состояния по несущей способности непрерывных областей (зоны балок и плит в состоянии трещинообразования, см. 6.1 – 6.4) и при проверке предельного состояния по несущей способности областей с разрывами сплошности (см. 6.5). Как правило, модели выходят за границу разрывов максимально на расстояние h (высота поперечного сечения элемента). Модели «распорки и тяжи» могут быть также использованы в элементах, в которых принято линейное распределение в пределах поперечного сечения, например, при плоской деформации.
(2) Проверка предельного состояния по эксплуатационной пригодности может также производиться с помощью модели «распорки и тяжи» (например, проверка напряжения стали и контроль ширины раскрытия трещин), если обеспечена приблизительная совместимость модели «распорки и тяжи» (в частности положение и направление главных распорок должны, как правило, ориентироваться согласно линейной теории упругости).
(3) Модели «распорки и тяжи» состоят из распорок, представляющих поля сжимающих напряжений, тяжей, представляющих арматуру, и соединительных узлов. Усилия в элементах модели «распорки и тяжи» определяются, как правило, при соблюдении равновесия с приложенными нагрузками в предельном состоянии по несущей способности. Элементы модели «распорки и тяжи» должны иметь размеры, определяемые по правилам, приведенным в 6.5.
(4) Тяжи модели «распорки и тяжи», как правило, должны совпадать по положению и направлению с соответствующим армированием.
(5) Возможные способы развития подходящих моделей «распорки и тяжи» включают использование траекторий и распределение напряжений в соответствии с линейной теорией упругости или методом траекторий (путей) передачи нагрузки. Все модели «распорки и тяжи» могут быть оптимизированы на основе энергетических критериев.
|