Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Химическая связь в твердых телахСодержание книги
Поиск на нашем сайте
Свойства твердых веществ определяются природой частиц, занимающих узлы кристаллической решетки и типом взаимодействия между ними. Твердые аргон и метан образуют атомные и молекулярные кристаллы соответственно. Поскольку силы между атомами и молекулами в этих решетках относятся к типу слабых ван-дер-ваальсовых, такие вещества плавятся при довольно низких температурах. Большая часть веществ, которые при комнатной температуре находятся в жидком и газообразном состоянии, при низких температурах образуют молекулярные кристаллы. Температуры плавления ионных кристаллов выше, чем атомных и молекулярных, поскольку электростатические силы, действующие между ионами, намного превышают слабые ван-дер-ваальсовы силы. Ионные соединения более твердые и хрупкие. Такие кристаллы образуются элементами с сильно различающимися электроотрицательностями (например, галогениды щелочных металлов). Ионные кристаллы, содержащие многоатомные ионы, имеют более низкие температуры плавления; так, для NaCl tпл. = 801 °C, а для NaNO3 tпл = 306,5 °C. Пример 1. Каким типом гибридизации АО бериллия описывается образование молекулы хлорида бериллия? Какова конфигурация этой молекулы? Решение: Возбужденный атом бериллия имеет конфигурацию 2s12p1. Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. В молекуле BeCl2 должны быть неравноценные по прочности и направлению связи, причем σ-связи из p-орбиталей должны быть более прочными, чем связи из s-орбиталей, т.к. для p-орбиталей имеются более благоприятные условия для перекрывания. Однако опыт показывает, что в молекулах, содержащих центральные атомы с различными валентными орбиталями (s, p, d), все связи равноценны – это объясняет метод гибридизации. В данном случае имеет место sp- гибридизация При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180о. Экспериментальные данные показывают, что все галогениды Be, а также Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину. Пример 2. Определите тип гибридизации орбиталей центрального атома в молекуле BF3. Какова конфигурация этой молекулы? Решение: Возбуждённый атом бора имеет конфигурацию 2s12p2. В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp2-орбитали, расположенные в одной плоскости под углом 120о друг к другу. sp2-гибридизация Пример 3. Каким типом гибридизации АО азота описывается образование молекулы аммиака? Решение: В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о , соответствующие тетраэдру. sp3- гибридизация в молекуле аммиака При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр. Пример 4. Объяснить с позиций метода МО возможность существования молекулярного иона Не2+ Решение: В молекулярном ионе Не2 + имеется три электрона. На связывающей орбитали размещены два электрона, а на разрыхляющей — один. Следовательно, порядок связи равен 0,5, и такой ион должен быть энергетически устойчивым. Пример 5. Определите энергию связи кислород-водород в молекуле Н2О если энергия связи Н–Н и О–О соответственно равны 435,9 и 498,7 кДж/моль, а при сгорании 2 моль водорода выделяется 483,68 кДж теплоты. Решение: Процесс образования молекулы воды можно представить следующим образом: рвутся связи водород-водород и кислород-кислород а образовавшиеся атомы соединяются в молекулы Н2О каждая из которых содержит две связи кислород-водород: 4Н(г) = 2Н2(г) – 435,9∙2 кДж 2О(г) = О2(г) – 498,7 кДж 2Н2(г) + О2(г) = 2Н2О(г) – 483,68 кДж ---------------------------------------------------- 4Н(г) + 2О(г) = 2Н2О(г) –– 1854,18 кДж В двух молекулах Н2О четыре связи кислород–водород; средняя энергия связи кислород – водород равна: –1854,18 / 4 = – 463,54 кДж/моль
Упражнения для самостоятельного решения 1. Определите тип гибридизации орбиталей центрального атома в следующих молекулах и укажите геометрическую форму этих молекул: AlBr3, BeF2, CF4, BBr3, H2O, SF6, SiCl4, NH3, CH4, AlCl3, BCl3 Полярны ли эти молекулы? 2. Определите тип гибридизации орбиталей центрального атома в следующих частицах и укажите геометрическую форму этих частиц: NH4+, GaCl4-, H3O+,BF4-, SiF62-, AlF63-, SO42-, PO43-. 3. Составьте энергетическую диаграмму МО для следующих частиц и определите порядок связи в них: H2,H2+,H2-,He2, HeH, He2+, Li2, Be2, B2, N2, N2+, O2, O2-, O2+, CO, CO+, NO, NO+, NO-. 4. Пользуясь таблицей относительных электроотрицательностей, определите, какая из связей является наиболее полярной:Са–Н, I–C1. C–S. 5. В каком из приведенных соединений:LiF, BeF,BF,CF связь Э–F будет больше всего приближаться к ковалентной? 6. Как изменяется прочность связи в ряду:НF–НСl–НВг–Н1? 7. При переходе от NaF к Nal температура плавления кристаллов уменьшается. Объясните наблюдаемый ход изменения температур плавления. 8. BaCl2 в водных растворах―сильный электролит, a HgCl2―слабый электролит. Объясните это различие в свойствах солей. 9. Сероводород при обычной температуре ― газ, а вода ― жидкость. Чем можно объяснить это различие в свойствах? КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ Основные понятия Комплексными или координационными соединениями принято называть соединения, в узлах кристаллической решётки которых находятся комплексы, способные к самостоятельному существованию в растворе. Комплексное соединение состоит из внутренней сферы и внешней сферы. Во внутреннюю сферу входят центральный атом (комплексообразователь) в некоторой степени окисления и лиганды – противоположно заряженные ионы или нейтральные молекулы. Общее число σ–связей, образуемых центральным атомом –комплексообразователем характеризует координационное число (КЧ) данного центрального атома. Например, в комплексном соединении K2[PtCl6] ионы К+ ― внешняя сфера, ион [PtCl6]2- — внутренняя сфера с центральным атомом PtIV и лигандами Cl-. В комплексном соединении[Fe(H2O)6]Cl3 ионы Cl- ― внешняя сфера, ион [Fe(H2O)6]3+ ― внутренняя сфера с центральным атомом FeIII и лигандами Н2О. В комплексе [Co(NH3)3Cl3] внешняя сфера отсутствует, а во внутренней сфере― центральный атом CoIII координирует лиганды NH3 и Cl- В соединении. [Ni(NH3)6][Fe(CN)6] содержатся комплексный катион [Ni(NH3)6]2+ и комплексный анион [Fe(CN)6]2-. При вычислении заряда комплексного иона заряд комплексообразователя принимается равным его степени окисления; тогда этот заряд равен алгебраической сумме зарядов комплексообразователя и лигандов. Например, заряды следующих комплексных ионов, образованных хромом(III): а)[Cr(H2O)5Cl]; б) [Cr(H2O)4Cl2]; в) [Cr(H2O)2(C2O4)2]. Равны: а) (3+) + (1–) = 2+; б) (3+) + 2(1–)= 1+; в) (3+) + 2(2–) = 1–.
|
||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 697; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.24.98 (0.007 с.) |