Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Обчислення за правилом складних відсотків в умовах змін вихідних параметрів

Поиск

За правилом складних процентів вартісні характерис­тики фінансової угоди (кінцева та початкова вартість коштів) без­посередньо залежатимуть від строку (кількості періодів) та нор­ми дохідності фінансової операції. Проаналізуємо чутливість вар­тісних характеристик угоди до змін параметрів часу та дохідності.

Класична формула нарощування складних процентів (3.1) пе­редбачає, що протягом усіх періодів п ставка дохідності r є ста­лою величиною.

Однак в реальних економічних умовах, ринкові ставки дохід­ності весь час змінюються, отже, у довгострокових фінансових угодах фіксувати ставку нарощування (або дисконтування) на весь термін угоди на визначеному початковому рівні не завжди доцільно. У разі плаваючих (змінних) ставок дохідності, зазвичай весь строк угоди розбивають на періоди, протягом яких ставка є незмінною.

Таким чином, коли впродовж терміну угоди ставки дохідності змінюються в часі, але в певні терміни, то нарощену за складни­ми процентами суму визначають за формулою:

 

                         (3.12)

 

де Т — загальна кількість періодів нарощування; r — ставка до­хідності у періоді t; п, — тривалість t періоду, у якому ставка до­хідності не змінюється.

Для визначення середньої ставки дохідності складних про­центів r за повний строк дії фінансової угоди N необхідно роз­в'язати відносно r таке рівняння:

 

звідси

 

                                   (3.13)

 

Отже, множник нарощування за середньою ставкою складних процентів визначають за формулою зваженої середньої геометричної величини.

Окрім плаваючої ставки дохідності, іншим змінним вихідним параметром фінансової операції є загальна кількість періодів на­рощування чи дисконтування. У практиці фінансових розрахун­ків часто трапляються ситуації, коли за фіксованого загального строку угоди п змінюється кількість періодів нарахувань коштів. Наприклад, за банківським депозитом вказується річна ставка складних процентів r, а нарахування здійснюють щомісяця чи щокварталу тощо.

Отже, у деяких фінансових угодах капіталізація (нарахування) процентів відбувається т разів однаковими частками через одна­кові проміжки часу протягом кожного періоду часу t (t =1,…, n).

В такому разі класична формула (3.1) для обчислення майбут­ньої вартості за правилом складних процентів, набуде вигляду:

 

                                                                               (3.14)

 

де п — загальний строк угоди (кількість років чи інших періодів часу); т — кількість нарахувань процентів протягом одного пе­ріоду часу.

Зазначимо, що коли т = 1 (тобто загальна кількість нараху­вань процентів співпадає з загальною кількістю періодів), то ви­раз (3.14) повністю співпадатиме з виразом (3.1). Отже, класичну формулу нарощування складних процентів можна вважати част­ковим випадком рівняння (3.14).

Приклад 3.3.

Вкладник поклав на депозит у банк 1 тис. грн. під 16 % річних. Умовами угоди передбачено, що на цю суму банк нараховує складні проценти щокварталу. Треба знайти суму, що акумулю­ється на депозитному рахунку через рік.

Рішення.

За формулою (3.14) маємо:

 

 

Тобто, фактична річна дохідність банківського депозиту, зав­дяки щоквартальному нарахуванню коштів, становить близько 17 %. Якщо б нарахування за річною ставкою в 16 % відбулося лише один раз на рік, то на депозитному рахунку була б менша сума— 1,16 тис. грн.

Таким чином, коли виплати здійснюють за правилом складних процентів кілька разів на рік, то фактична річна дохідність фінан­сової угоди більша від задекларованої річної дохідності за раху­нок реінвестування коштів.

Зазначимо, що за правилом простих процентів фактична до­хідність угоди завжди співпадатиме із задекларованою дохідніс­тю, оскільки проценти нараховують лише на початкову суму (не реінвестуються), отже нарощена величина не залежатиме від кіль­кості нарахувань протягом одного періоду часу.



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 94; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.222.132 (0.01 с.)