![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проведение возбуждения по нервным волокнамСодержание книги
Поиск на нашем сайте
Главной функцией нервных волокон является проведение нервных импульсов, в возникновении и проведении которых основную роль играет плазматическая мембрана, обладающая высокой возбудимостью. Механизм распространения нервного импульса связан с появлением так называемых местных круговых токов, которые возникают при прохождении через мембрану аксона ионов калия, натрия, кальция. Перемещение различно заряженных ионов из аксона в окружающую аксон жидкость (или наоборот) приводит к возникновению разности потенциалов между внутриаксональной и наружной средами. Вспыхнувшая разность потенциалов возбуждает кольцевой участок аксона. В нем также возникают ионные токи, устанавливается разность потенциалов, которая возбуждает следующий участок, и так все дальше и дальше по аксону до синапса. В безмиелиновых волокнах возбуждение постепенно охватывает соседние участки мембраны осевого цилиндра и так волнообразно распространяется до конца аксона. Скорость распространения возбуждения по волокну определяется его диаметром - чем больше диаметр, тем выше скорость проведения возбуждения. В миелиновых волокнах скорость проведения нервных импульсов значительно выше, чем в немиелиновом волокне, хотя и в этих волокнах сохраняется прямая пропорциональная зависимость скорости проведения возбуждения от его диаметра. В отличие от безмиелиновых волокон в миелиновых волокнах круговые электрические токи возникают только в области перехватов Ранвье. Именно здесь, в перехватах Ранвье количество натриевых каналов достигает 12 тысяч на 1 мкм2, что значительно больше, чем в любом другом участке волокна. В результате эти участки являются наиболее возбудимыми и поэтому именно в них генерируется очередной потенциал действия. Он в свою очередь вызывает генерацию ПД в соседнем перехвате Ранвье, а возникший в этом перехвате новый ПД вызывает возбуждение следующего перехвата Ранвье. В целом, все это приводит к так называемому скачкообразному, или сальтаторному (от лат. saltare - прыгать), проведению возбуждения по нерву. В основе такого отличия лежат морфологические особенности структуры миелинового волокна, о чем уже говорилось выше. Напомним, что каждый участок волокна между перехватами Ранвье одет толстой оболочкой из миелина, который таким образом отделяет аксон от тканевой жидкости и действует как электрический изолятор. Однако в перехватах Ранвье миелин отсутствует, так что здесь ак-солемма соприкасается с тканевой жидкостью. Поскольку аксолемма между перехватами изолирована, ток в таких участках не может идти через аксолемму в окружающую волокно среду. В области перехватов Ранвье аксолемма лишена миелиновой изоляции, поэтому местные электрические токи возникают между перехватами Ранвье. Нервные импульсы как бы перескакивают вдоль миелиновых волокон от одного перехвата к другому.
В целом, такой механизм обеспечивает гораздо более быстрое (примерно в 50 раз) распространение ПД, чем в безмиелиновых волокнах. При этом скорость проведения возбуждения по миелиновому волокну прямо пропорциональна и диаметру волокна, и длине между перехватами Ранвье, т.е. чем больше диаметр и чем длиннее интервалы между перехватами Ранвье, тем выше скорость проведения возбуждения. Таким образом, в миелиновых нервных волокнах, благодаря наличию миелиновой оболочки и совершенству метаболизма в нервном волокне, возбуждение проходит, не затухая, бездекрементно. Этому способствуют наличие на всем протяжении мембраны волокна равного заряда и быстрое его восстановление после прохождения возбуждения. Нервное волокно обладает возбудимостью и лабильностью. Возбудимость миелиновых нервных волокон выше, чем у безмиелиновых. Кроме того, у миелиновых волокон более высокая лабильность по сравнению со всеми другими нервными образованиями, включая и безмиелиновые нервные волокна. Например, известно, что миелиновые волокна могут воспроизводить до 1000 импульсов в 1 с. Законы проведения возбуждения по нервным волокнам. Выделяют следующие законы проведения возбуждения по нервным волокнам - 1) закон изолированного проведения возбуждения; 2) закон анатомической и физиологической целостности нервного волокна; 3) закон двустороннего проведения возбуждения; 4) закон практической неутомляемости нервных волокон. 5) закон прямо пропорциональной зависимости скорости проведения импульса от диаметра нервного волокна.
Закон изолированного проведения возбуждения утверждает, что проведение возбуждения по отдельным нервным волокнам, проходящим в составе нерва, происходит изолированно, независимо от других волокон. Способность нервного волокна к изолированному проведению возбуждения обусловлена наличием глиальных (в том числе миелиновой) оболочек, а также тем, что сопротивление жидкости, заполняющей межволоконные пространства, значительно ниже, чем сопротивление мембраны волокна. Поэтому ток, выйдя из возбужденного волокна, шунтируется в жидкости и оказывается слабым для возбуждения соседних волокон. Возможность изолированного проведения возбуждения имеет большое физиологическое значение, так как обеспечивает, например, изолированность сокращения каждой нейромоторной единицы. Закон анатомической и физиологической целостности нервного волокна утверждает, что необходимым условием проведения возбуждения в нерве является не только его анатомическая непрерывность, но и физиологическая целостность. В любом металлическом проводнике электрический ток будет течь до тех пор, пока проводник сохраняет физическую непрерывность. Для нервного «проводника» этого условия недостаточно - нервное волокно должно сохранять также физиологическую целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, аммиаком и др.), то проведение возбуждения по волокну прекращается. Применение в клинической медицине с целью обезболивания местных анестетиков, блокирующих активность натриевых каналов, прежде всего, в перехватах Ранвье, доказывает, с одной стороны, важность данного закона, а с другой - возможность обратимой блокады ионных каналов. Закон двустороннего проведения возбуждения по нервному волокну утверждает, что любое нервное волокно (афферентное или эфферентное) способно проводить возбуждение в обоих направлениях (к нейрону или от него). В этом можно убедиться, если наносить искусственное раздражение на волокно - потенциалы действия будут распространяться в обе стороны от места раздражения. Однако реально за счет наличия одностороннего проведения возбуждения в химических синапсах все нервные волокна проводят возбуждение по одному направлению, характерному для данного волокна (по афферентным волокнам - в ЦНС, по эфферентным волокнам - от ЦНС к органу). Закон практической неутомляемости нервных волокон, который был сформулирован Н.Е. Введенским, указывает на то, что нервное волокно обладает малой утомляемостью. Действительно, проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) эксперимента. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохождении возбуждения. В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых насосов. Закон прямо пропорциональной зависимости скорости проведения импульса от диаметра нервного волокна был установлен лауреатами Нобелевской премии (1944г.) американскими физиологами Джозефом Эрлангером и Гербертом Гассером. На основании этого закона авторы предложили классификацию нервных волокон.
|
|||||||
Последнее изменение этой страницы: 2019-11-02; просмотров: 155; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.82.70 (0.008 с.) |