Физиологические функции нейрона 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физиологические функции нейрона

Поиск

Функции нейрона как целого образования - это обеспечение информационных процессов в ЦНС, в том числе с помощью веществ-передатчиков (нейромедиаторов). Нейроны как специализированные клетки осуществ­ляют прием, кодирование, обработку, хранение и переда­чу информации. Нейроны формируют управляющие (регу­лирующие) команды для различных внутренних органов и для скелетных мышц (благодаря чему совершаются разнообразные локомоции), а также обеспечивают реали­зацию всех форм психической деятельности - от эле­ментарных до самых сложных, включая мышление и речь. Все это обеспечивается за счет уникальной способ­ности нейрона генерировать электрические разряды и пе­редавать информацию с помощью специализированных окончаний - синапсов. Однако реализация всех функций нейрона возможна лишь при совместной работе нейронов. Поэтому решающим моментом в деятельности нейрона является его способность к генерации потенциалов дей­ствия, а также его способность воспринимать потенциалы действия и медиаторы от других нейронов и передавать необходимую информацию другим нейронам. Все это особенно наглядно проявляется в том случае, когда ней­рон является компонентом нейронных объединений, в ча­стности - составной частью рефлекторной дуги (см. ниже). Реализация информационной функции происходит с участием всех отделов нейрона - дендритов, перикариона и аксона. При этом дендриты вместе с перикарионом специализируются на восприятии информации, аксоны (вместе с аксонным холмиком перикариона) - на пере­даче информации, а перикарион на принятии решения (в широком смысле этого слова). Кроме того, тело нейрона (сома, или перикарион), помимо информационной, выпол­няет трофическую функцию относительно своих отрост­ков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальнее перерезки, а, следовательно, и синапсов этих отростков. Сома обеспе­чивает также рост дендритов и аксона.

Как и все возбудимые клетки, нейроны имеют мембранный потенциал, природа которого, как уже отме­чалось выше, главным образом, обусловлена неравновес­ным распределением ионов К+. У большинства нейронов величина мембранного потенциала достигает 50-70 мВ. У фоновоактивных нейронов, т.е. обладающих спонтанной активностью, величина мембранного потенциала периоди­чески уменьшается (т.е. наблюдается спонтанная деполя­ризация), в результате чего при достижении критического уровня деполяризации происходит генерация потенциала действия. Однако большинство нейронов генерируют по­тенциалы действия лишь в ответ на воздействие сенсор­ного стимула. Пороговый потенциал в среднем для пери­кариона составляет примерно 20-35 мВ, для дендритов - он еще выше, зато в области аксонного холмика он со­ставляет всего 5-10 мВ. Таким образом, наиболее возбу­димым участком перикариона является аксонный холмик. Для потенциалов действия всех нейронов характерна от­носительно небольшая амплитуда, которая достигает 80-110 мВ. Потенциал действия по своей форме (при внут­риклеточном отведении) является пикообразным. Для него характерна кратковременность спайка (1-3 мс), вы­раженность следовой гиперполяризации (особенно это ти­пично в отношении мотонейронов спинного мозга), в ре­зультате чего нередко возбудимость нейрона понижается. Длительность абсолютной рефрактерной фазы для нейро­нов - сравнительно небольшая (в пределах 2-3 мс), что обеспечивает относительно высокий уровень лабильности нейронов. Вместе с тем, для нейронов характерна высо­кая утомляемость, что указывает на относительно огра­ниченные возможности нейронов к восстановлению. В то же время следует помнить, что большая продолжитель­ность жизни нейрона, связанная с отсроченным наступле­нием апоптоза, в определенной степени и обеспечивается способностью нейронов своевременно, а точнее, заблагов­ременно прекращать свою деятельность, не допуская ак­тивацию апоптоза.

Генерация потенциала действия, в частности фаза де­поляризации объясняется вхождением ионов Na+ из вне­клеточной среды внутрь нейрона, а фаза реполяризации - выходом ионов К+, а также активацией работы Na+-K+-насоса. Нейроны также имеют кальциевые каналы, кото­рые в большей степени сконцентрированы в области пресинаптической мембраны аксонных терминалей. Здесь же содержится и Са2+-насос, обеспечивающий удаление ионов каль­ция из пресинаптического окончания во внеклеточную среду. Концентрация ионов Са2+ во внеклеточной среде является важнейшим механизмом регуляции возбудимос­ти нейрона. Повышение уровня Са2+ в крови (до опреде­ленных значений) снижает ее, а уменьшение - приводит к чрезмерному повышению возбудимости, что нередко со­провождается появлением спонтанной генерации потенци­алов действия и возникновением судорожного состояния. Такая зависимость возбудимости от ионов Са2+ связана с наличием в мембране перикариона кальциевых каналов, а также Са2+-зависимых калиевых каналов. Когда в нейроне возрастает внутриклеточная концентрация ионов Са2+, то это вызывает активацию Са2+-зависмых калиевых каналов, что повышает проницаемость для ионов К+. Следствием этого является развитие выраженной следовой гиперпо­ляризации, которая наблюдается в период фазы реполя­ризации. Важно отметить, что сама по себе следовая ги­перполяризация играет важную роль в деятельности ней­рона. Это связано с тем, что в ответ на длительную депо­ляризацию, которая может возникнуть под влиянием се­рии приходящих к нейронам импульсов, нейрон обычно генерирует не одиночный потенциал, а серию потенциа­лов действия. Частота следования импульсов в этой серии определяется величиной следовой гиперполяризации - чем она выше, тем больше интервал между соседними по­тенциалами действия, т.е. тем реже они генерируются. Вот почему, например, максимальный ритм возбуждения в мотонейронах спинного мозга, у которых фаза гипер­поляризации длится 100-150 мс, составляет всего 40-50 Гц. В тоже время нейроны, у которых длительность фазы гиперполяризации небольшая (например, некоторые вставочные нейроны), могут выдавать вспышки разрядов с частотой до 1000 Гц.

Важным для физиологии нейрона является механизм поддержания концентрации ионов К+ в межклеточной среде. Это связано с тем, что в ЦНС нейроны и их отро­стки окружены узкими щелеподобными внеклеточными пространствами (ширина щели не превышает обычно 15 нм). Поэтому во время генерации потенциала действия концентрация ионов К+ в этих пространствах может су­щественно повыситься (вместо 4-5 мМ она может дости­гать 10 мМ), что приведет к нарушению деятельности нейрона, вплоть до генерации судорожных разрядов. Для того, чтобы предотвратить этот процесс клетки нейроглии, в частности, астроциты, берут на себя функцию по регуляции содержания ионов во внеклеточном простран­стве. В частности, при избыточном содержании ионов К+ во внеклеточном пространстве глиальные клетки погло­щают их, а при недостаточном их содержании - выделя­ют эти ионы. Таким образом, астроциты выполняют фун­кции буферной системы в отношении ионов К+, Са2+ и, вероятно, других ионов.

Многочисленные дендриты и плазматическая мембра­на перикариона богаты хеморецепторами, за счет кото­рых происходит восприятие сигналов, передаваемых с участием синапсов. Каждый нейрон имеет большое число синапсов, с учетом общего числа нейро­нов у человека, равного примерно 1011, (в этом случае суммарное число синаптических контактов между нейро­нами, как указывалось выше, приближается к астрономической цифре 1015) обеспечивает возможность хранения в ЦНС до 1019 еди­ниц информации. Это количество информации эквивалент­но практически всем знаниям, накопленным на сегодняш­ний день человечеством.

Важно также отметить, что за счет взаимодействия медиатора с рецептором на постинаптической мембране нейрона может возникать два процесса - деполяризация (возбуждающий постсинаптический потенциал) и гиперполяризапция (тормозной постсинаптический потенциал). Эти процессы интегрируются в пространстве и во време­ни (соответственно, пространственная и временная суммация) на мембране нейрона и тем самым либо порождают генерацию ПД на аксонном холмике, либо, наоборот, увеличивают МП(мембранный потенциал) и тем самым препятствуют возбужде­нию нейрона. Это явление, получившее название синаптического взаимодействия, играет исключительно важную роль в деятельности нейрона.

Относительно такого свойства нейрона как проводи­мость следует подчеркнуть, что все его компоненты - перикарион, дендриты и аксон - способны к проведению импульса. При этом для дендрита и, особенно, для аксона проведение возбуждения является основной функцией. Как правило, нейрон динамически поляризован, т.е. способен проводить нервный импульс только в одном на­правлении - от дендрита через тело клетки к аксону. Это явление называется ортодромным распространением воз­буждения. В отдельных случаях возможно антидромное распространение возбуждения, т.е. от аксона к перикариону и дендритам. В этом аспекте важно отметить, что бла­годаря коллатералям и наличию тормозных вставочных нейронов, ряд нейронов ЦНС может осуществлять так на­зываемое возвратное самоторможение - в период генера­ции ПД возбуждение от нейрона А распространяется по аксону к другому нейрону или органу, но одновременно возбуждение по коллатералям достигает тормозного ней­рона. Его активация приводит к торможению нейрона А.

С функциональ­ной точки зрения нейрон может находиться в трех ос­новных состояниях - 1) в состоянии покоя, 2) в состо­янии активности, или возбуждения, и 3) в состоянии торможения.

1). В состоянии покоя нейрон имеет стабильный уровень мембранного потенциала. В любой момент ней­рон готов возбудиться, т.е. генерировать потенциал дей­ствия, либо перейти в состояние торможения.

2). В состоянии активности, т.е. при возбуждении нейрон генерирует потенциал действия или чаще - груп­пу потенциалов действия (серия ПД, пачка ПД, вспышка возбуждения). Частота следования потенциалов действия внутри данной серии ПД, длительность этой серии, а так­же скважность (интервалы) между последовательными се­риями - все эти показатели широко варьируют, и явля­ются составляющей кода нейронов. Выше уже отмечалось, что важную роль в регуляции частоты импульсации имеют ионы Са2+ и К+.

Чаще всего состояние активности индуцируется. Это, происходит за счет поступления импульсов к нейрону от других нейронов. Для некоторых нейронов активное со­стояние возникает спонтанно, т.е. автоматически, причем, чаще всего автоматия нейрона проявляется периодической генерацией серии импульсов. Примером таких нейронов- пейсмекеров, т.е. водителей ритма являются нейроны ды­хательного центра продолговатого мозга.

Нередко такие нейроны называют фоновоактивными нейронам. По характеру реакции на приходящие импуль­сы они делятся на тормозные и возбуждающие. Тормоз­ные нейроны урежают свою фоновую частоту разрядов в ответ на внешний сигнал, а возбуждающиеся - увеличи­вают частоту фоновой активности.

Существует как минимум три вида фоновой активно­сти нейронов - непрерывно-аритмичный, пачечный и групповой.

Непрерывно-аритмичный вид активности проявляется в том, что фоновоактивные нейроны генерируют импульсы непрерывно с некоторым замедлением или увеличением ча­стоты разрядов. Такие нейроны обычно обеспечивают то­нус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

Пачечный тип активности заключается в том, что нейроны выдают группу импульсов с коротким межим­пульсным интервалом, после этого наступает период мол­чания, а затем вновь генерируется пачка импульсов. Обычно межимпульсные интервалы в пачке равны при­близительно 1-3 мс, а интервал между пачками ПД со­ставляет 15-120 мс. Считается, что такой тип активности создает условия для проведения сигналов при снижении функциональных возможностей проводящих или воспри­нимающих структур мозга.

Групповая форма активности характеризуется апери­одическим появлением группы импульсов (межимпульс­ные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

3). Состояние торможения проявляется в том, что фоновоактивный нейрон или нейрон, получающий воз­буждающее воздействие извне, прекращает свою импуль­сную активность. В состояние торможения нейрон может переходить и из состояния покоя. Во всех случаях в ос­нове торможения лежит явление гиперполяризации ней­рона (это характерно для постсинаптического торможе­ния) или активное прекращение поступающей импульса­ции от других нейронов, что наблюдается в условиях пресинаптического торможения.

Представление о роли входящей информации для нейрона. Принятая дендритами входящая информация перерабатывается в теле нейрона, запуская серию метабо­лических (обменных) процессов. Часть этих процессов не­обходима для поддержания жизнедеятельности нейрона. Другая часть индуцированных обменных процессов преобразуется в ответ в виде генерации потенциалов дей­ствия, идущих к органу-мишени или к другому нейрону в виде серий импульсов определенной частоты. Третья часть процессов необходима для создания в нейроне сво­еобразного буфера для обеспечения постоянства выхода потенциалов действия из нейрона при количественных ко­лебаниях входа. При стойком повышении количества при­нимаемых импульсов аккумулируемый запас становится чрезмерным, соответственно, аксон повышает частоту своей импульсации, но не постепенно, а скачкообразно, как бы перескакивая на новый уровень активности, такой же относительно постоянный, как и предыдущий. Если перегрузка не ликвидируется, то возможны и дальнейшие скачкообразные увеличения частоты импульсации, а затем и повышение мощности импульсов. При недостатке по­ступающих стимулов в первую очередь исчерпывается ак­кумулированный запас - нейрон пытается сохранить по­стоянство режима ответов, т.е. выходной импульсации. При стойком и значительном снижении поступления «за­пасы» исчерпываются, и возникают скачкообразные изме­нения частоты аксональных импульсов, только в обрат­ном порядке - в сторону снижения. Снижение количе­ства входных стимулов ниже некоторого критического уровня приводит к тому, что нейрон не только не может организовать ответную реакцию, но и не располагает ре­сурсами для полноценного обеспечения собственной жизнедеятельности. Полное блокирование входных им­пульсов приводит к гибели нейрона. Изложенная гипоте­за в определенной степени согласуется с представлением Г. Сорохтина (60-е годы XX века) о негативном влиянии на деятельность нейронов дефицита поступающей инфор­мации (гипотеза о дефиците возбуждения).

Ведущей причиной, которая отличает мозга человека от мозга других представителей животного мира, является количественный состав нейро­нов мозга и характер их объединения.

 



Поделиться:


Последнее изменение этой страницы: 2019-11-02; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.136.95 (0.013 с.)