Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Возрастные особенности структуры и функции нервных клетокСодержание книги
Поиск на нашем сайте
Нервные клетки образуются из эктодермальных клеток первичной мозговой трубки на ранних стадиях эмбрионального развития. Эктодермальные клетки дифференцируются в двух направлениях: из одних образуются нейробласты, дающие начало нервным клеткам, а из других - спонгиобласты, превращающиеся в клетки глии и эпендимы. Постепенно стенки мозговой трубки становятся многослойными, в них образуется серое и белое вещество мозга, нейроглия и эпендима мозговых желудочков и центрального канала. На ранних стадиях развития нервная клетка характеризуется большой величиной ядра, которое окружено небольшим количеством цитоплазмы. Такая клетка носит название аполярного нейробласта. В процессе развития с увеличением размеров клетки уменьшается относительный объем ядра. На 3-м месяце внутриутробного развития в цитоплазме появляются нейрофибрил- лы и одновременно начинается рост аксона нервной клетки. Аксон растет по направлению к периферии вплоть до иннервируемого органа - мышцы или железы. В исследованиях на различных животных изучены особенности развития аксона. Растущий аксон на конце имеет колбу роста, в которой содержатся крупные пузырьки разной формы, но отсутствуют митохондрии. Синапс образуется в результате контакта колбы роста с нейроном. Колба роста превращается в пресинаптическое образование, в ней развиваются везикулы. Одновременно могут сохраняться крупные пузырьки, что считают показателем возможности роста нейрона после образования синапса. На первом этапе развития синапса дифференцируются мембраны, затем в пресинаптической части образуются митохондрии и везикулы, количество которых быстро увеличивается. Постепенно увеличивается синаптическая щель и утолщается пресинаптическая мембрана. Некоторые исследователи считают, что функциональная деятельность нейробласта начинается с того момента, когда аксон достигает органа. Проведение возбуждения в нейронах ЦНС обнаружено с момента образования синапса, со всеми его компонентами. Дендриты вырастают значительно позже аксона. Сначала на противоположном аксону полюсе клетки в виде простого выроста цитоплазмы появляется верхушечный дендрит, вследствие чего нейробласт становится биполярным. Затем вырастают дендриты со всех сторон, и нейробласт становится мультиполярным.
Считают, что способность проводить возбуждение у дендрита появляется значительно позже, чем у аксона (аксон функционирует во внутриутробном периоде развития ребенка, а дендрит после рождения). В процессе развития увеличивается количество ветвлений дендрита. Шипики на дендритах развиваются в основном после рождения. Они обнаружены у плода в 8 лунных месяцев в наиболее рано созреваюших первичных полях коры (например, прецентральной и постцентральной), на дендритах крупных пирамидных клеток V слоя. В коре больших полушарий количество шипиков возрастает вместе с увеличением условнорефлекторных связей. Развитие нервно-мышечных синапсов осуществляется под влиянием мотонейронов. В опытах на крысах показано, что функциональный контакт между нервным и мышечным волокнами устанавливается за 5 дней до рождения. Если перерезать нервное волокно, идущее к мышце, то концевая пластинка не формируется, ее формирование происходит после установления иннервации. На ранней стадии установления иннервации, наблюдается спонтанная подпороговая деполяризация, напоминающая ПКП. У плода их частота низка, что связывают с небольшим размером синапса и малым количеством медиатора; она становится такой, как у взрослой крысы к 20-му дню жизни. На основании величины ПКП (около 4 мв) считают, что у плода в кванте содержится столько же медиатора, как и у взрослого. Но у плода медиатор более активен и у него требуется меньше квантов для осуществления нервно-мышечной передачи. В концевой пластинке плода ацетилхолин сохраняется более длительно вследствие низкого содержания холинэстеразы. Последняя образуется в мотонейроне и передвигается по аксону к постсинаптической мембране, где постепенно накапливается. Во время развития аксона происходит его погружение в шванновскую клетку и образование миелиновой оболочки (рис.5). При погружении в шванновскую клетку аксон никогда не контактирует с ее цитоплазмой, т. к. он внедряется в углубление на поверхности шванновской клетки (рис.5,б). Постепенно шванновская клетка обволакивает аксон, и края ее смыкаются. Этот участок называется мезаксоном. Он состоит из двух мембран шванновской клетки. Исследованиями Герен на куриных эмбрионах показано, что миелиновая оболочка образуется в результате роста мезаксона. В ходе развития мезаксон удлиняется и несколько раз обертывается вокруг аксона так, что образуется спираль (рис.5, в,г). На ранних стадиях развития спираль скручена свободно, между витками мезаксона имеются широкие пространства. Позднее спираль закручивается более плотно и образуется компактная миелиновая оболочка. В крупных нервах миелиновая оболочка может достигать 2-3 микрон толщины и быть образована 200 оборотами спирали.
Механизм закручивания спирали точно неясен: большинство исследователей считает, что шванновская клетка вращается вокруг аксона и обволакивает его. При закручивании спирали наружный слой мембраны соприкасается с наружным, а внутренние слои примыкают друг к другу. При рассмотрении миелина под электронным микроскопом видно, что он состоит из повторяющихся линий. Среди них различают главную плотную линию, образованную внутренними слоями мембраны и более светлую промежуточную линию, образованную внешними поверхностями мембраны (рис.5, д). Миелинизация нервных волокон осуществляется в центробежном направлении - отступя несколько микрон от тела клетки к периферии нервного волокна, она является определенным показателем их функционального развития.
Рис.5. Схема, иллюстрирующая образование миелиновой оболочки: б-аксон (А) окружен отдельной шванновской клеткой, М-мезаксон, в - спиральное закручивание мезаксона, г - образование компактной миелиновой оболочки, Д - схематическое изображение строения миелиновой оболочки: 1 - светлая промежуточная линия, 2 - главная плотная линия.
Установлена зависимость возбудимости нервных волокон от миелинизации - по мере развития миелиновой оболочки возбудимость нервного волокна повышается. Еще Бехтеревым (1886-1909 гг.) в наблюдениях на животных отмечено, что миелинизация волокон происходит довольно быстро: на 2- 4-й день развития плода миелин обнаруживается в боковых столбах, а на 10-12-й - в волокнах пирамидного пути. Флексиг исследовал особенности миелинизации волокон у человеческих плодов и детей раннего возраста. Он отметил такую же раннюю миелинизацию у человека. У плода 34 см длиной он обнаружил миелинизированные волокна даже в центральной извилине, но не нашел ее завершения и у 11-месячного ребенка. В различных экспериментах на животных и в исследованиях на человеческих плодах и детях разного возраста показано, что отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна. Реакции возможны, но они обобщены и слабо координированы. Раньше всех миелинизируются периферические нервы, затем волокна спинного, стволовой части головного мозга, мозжечка и позже - больших полушарий головного мозга. Большинство смешанных и центростремительных нервов миелинизируются к 3-месячному возрасту, некоторые - к 3 годам. Миелинизация спинномозговых и черепномозговых нервов начинается на 4-м месяце внутриутробной жизни. В спинном мозгу раньше миелинизируются двигательные, затем смешанные и позже - центростремительные волокна. Двигательные волокна покрыты миелином к моменту рождения. Проводящие пути спинного мозга хорошо развиты к моменту рождения и почти все миелинизированы. Не закончена миелинизация только пирамидных путей, она завершается по данным разных авторов к 3-6 месяцам жизни ребенка.
Черепно-мозговые нервы формируются по-разному, большинство из них миелинизируются к 1-1,5 годам. К 2 годам миелинизируются слуховые нервы. Зрительные и языкоглоточный нервы у новорожденных еще не миелинизированы, но у 3-4-летних детей отмечается их полная миелинизация. Показана динамика миелинизации лицевого нерва. Его ветви, иннервирующие область губ миелинизируются в период от 21 до 24 недель внутриутробной жизни, другие ветви приобретают миелиновую оболочку значительно позже. Этот факт показывает раннее формирование морфологической основы сосательного рефлекса, хорошо выраженного к моменту рождения ребенка. Миелинизация нервных волокон головного мозга начинается во внутриутробном периоде развития и заканчивается после рождения. В отличие от спинного мозга, в головном мозге раньше других миелинизируются афферентные пути и области, а двигательные - через 5-6 месяцев (а некоторые значительно позже) после рождения. Несмотря на то, что к трем годам в основном осуществляется миелинизация нервных волокон, рост миелиновой оболочки и осевого цилиндра продолжается и после 3-летнего возраста.
|
|||||||
Последнее изменение этой страницы: 2019-11-02; просмотров: 155; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.184.236 (0.011 с.) |