Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Мейоз. Особенности первого и второго деления мейоза. Биол-ое знач-е.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Угрица кишечная: систематика, геогр-ое распр-ие, особен-ти морфологии, цикл разв. Лабор-ая диагност-ка и профил стронгилоидоза. Вопрос 1 Эволюция – постоянный процесс достижения соответствия между биологическими системами и изменяющимися условиями внешней среды. Наука, изучающая закономерности эволюции, называется эволюционным учением, или эволюционной биологией. Существует две предпосылки для эволюционного преобразования органов: · полифункциональность органа; · способность к количественным изменениям функций. Способы преобразования органов и функций: · усиление главной функции; · ослабление главной функции; · полимеризация органов; · олигомеризация органов; · уменьшение числа функций; · увеличение числа функций; · разделение функций и органов; · смена функций; · замещение органов и функций (субституция). Усиление главной функции достигается двумя путями: а) изменением строения органа, б) увеличением числа однородных элементов внутри органа. Пример первого рода – усиление функции мышечного сокращения в результате замены гладкой мускулатуры поперечнополосатой. Пример второго рода – увеличение дыхательной поверхности легких у млекопитающих в результате увеличения числа отдельных альвеол. Ослабление главной функции. Примером может служить ослабление терморегуляторной функции волосяного покрова при переходе китообразных к водному образу жизни. Полимеризация органов – увеличение числа однородных органов или структур. Примеры: увеличение числа хвостовых позвонков у длиннохвостых млекопитающих, у змей. Олигомеризация органов – уменьшение числа многочисленных однородных органов или структур. Примеры: слияние у многих позвоночных крестцовых позвонков с тазовыми костями, уменьшение числа жаберных артериальных дуг у позвоночных. Уменьшение числа функций наблюдается в процессе специализации какого-либо органа. Например, конечности предков китообразных несли, по-видимому, много функций (опора, рытье, защита от врагов и т.д.), однако с превращением их в ласты большинство прежних функций исчезло. Увеличение числа функций является результатом добавления к первичной функции новых. Например, плавники летучих рыб приобрели функцию планирования. Разделение функций и органов можно проиллюстрировать на примере распадения единого непарного плавника, характерного для предков рыб, на ряд самостоятельных плавников, обладающих частными функциями. Смена функций – один из наиболее общих способов эволюции. Примеры: превращение яйцеклада у насекомых в жало, дифференцировка конечностей у десятиногих раков, преобразование первой хрящевой жаберной дуги у рыб в первичные челюсти. Замещение органов и функций происходит в том случае, когда один орган исчезает, а его функцию у потомков начинает выполнять другой орган. Например, замена хорды на позвоночный столб у позвоночных животных. Вопрос 2 Мейоз Центральным событием гаметогенеза является особая форма клеточного деления — мейоз. В отличие от широко распространенного митоза, сохраняющего в клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы формируют организм нового поколения с диплоидным кариотипом {пс +пс = 2п2с). В этом заключается важнейшее биологическое значение мейоза, который возник и закрепился в процессе эволюции у всех видов, размножающихся половым путем. Мейоз состоит из двух быстро следующих одно за другим делений, происходящих в периоде созревания. Удвоение ДНК для этих делений осуществляется однократно в периоде роста. Второе деление мейоза следует за первым практически сразу так, что наследственный материал не синтезируется в промежутке между ними. Первое мейотическое деление называют гпмдушионным, так как оно приводит к образованию из диплоидных клеток (2л2с) гаплоидных клеток п2с. Такой результат обеспечивается благодаря особенностям профазы первого деления мейоза. В профазе I мейоза, так же как в обычном митозе, наблюдается компактная упаковка генетического материала (спирализация хромосом). Одновременно происходит событие, отсутствующее в митозе: гомологичные хромосомы конъюгируют друг с другом, т. е. тесно сближаются соответствующими участками. В результате конъюгации образуются хромосомные пары, или биваленты, числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух хроматид, то бивалент содержит четыре хроматиды. Формула генетического материала в профазе I остается 2«4а К концу профазы хромосомы в бивалентах, сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза начинается формирование веретена деления, с помощью которого хромосомный материал будет распределяться между дочерними клетками (рис. 5.5). Процессы, происходящие в профазе I мейоза и определяющие его результаты, обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах (рис. 5.5). _Лептотена — наиболее ранняя стадия профазы I мейоза, в которой начинается спирализация хромосом, и они становятся видимыми в микроскоп как длинные и тонкие нити. Зиготена характеризуется началом конъюгации гомологичных хромосом, ко-торые объединяются синаптонемальным комплексом в бивалент ((рис. 5.6). Пахитена — стадия, в которой на фоне продолжающейся спирализации хромосом и их укорочения, между гомологичными хромосомами осуществляется кроссинговер — перекрест с обменом соответствующими участками. Диплотена- характеризуется возникновением силотталкивания между гомологичными хромосомами, которые начинают отделяться друг от друга в первую очередь в области центромер, но остаются связанными в областях прошедшего кроссинговера – хиазмах. Диакинез – завершающая стадия профазы 1 меоза, в которой гомологичные хромосомы удерживаются вместе лишь в отдельных точках хиазм, приобретая причудливую форму колец, крестов, восьмерок и т. д. Таким образом, несмотря на возникающие между гомологичными хромосомами силы отталкивания, в, профазе I не происходит окончательного разрушения бивалентов. Особенностью мейоза в овогенезе является наличие специальной стадии— диктиот ены отсутствующей в сперматогенезе. На этой стадии, достигаемой у человека еще в эмбриогенезе, хромосомы, приняв особую морфологическую форму «ламповых щеток», прекращают какие-либо дальнейшие структурные изменения на многие годы. По достижении женским организмом репродуктивного возраста под влиянием лютеинизирующего гормона гипофиза, как правило, один овоцит ежемесячно возобновляет мейоз. В метафазе /мейоза завершается формирование веретена деления. Его нити прикрепляются к центромерам хромосом, объединенных в биваленты, таким образом, что от каждой центромеры идет лишь одна нить к одному из полюсов веретена. В результате нити, связанные с центромерами гомологичных хромосом, направляясь к разным полюсам, устанавливают биваленты в плоскости экватора веретена деления. В анафазе I мейоза ослабляются связи между гомологичными хромосомами в бивалентах и они отходят друг от друга, направляясь к разным полюсам веретена деления. При этом к каждому полюсу отходит гаплоидный набор хромосом, состоящих из двух хроматид. В телофазе I мейоза у полюсов веретена собирается одинарный, гаплоидный набор хромосом, каждая из них содержит удвоенное количество ДНК.Формула генетического материала образующихся дочерних клеток соответствует п2с. Второе мейотическое (эквационное) деление приводит к образованию клеток, в которых содержание генетического материала в хромосомах будет соответствовать их однонитчатой структуре. Это деление протекает, как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом. В процессе такого деления материнские двунитчатые хромосомы, расщепляясь, образуют, дочерние однонитчатые. Одна из главных задач мейоза — создание клеток с гаплоидным набором однонитчатых хромосом —достигается благодаря однократной редупликации ДНК для двух последовательных делений мейоза, а также благодаря образованию в начале первого мейотического деления пар гомологичных хромосом и дальнейшего их расхождения в дочерние клетки. Процессы, протекающие в редукционном делении, обеспечивают также не менее важное следствие — генетическое разнообразие гамет, образуемых организмом. К таким процессам относят кроссинговер, расхождение гомологичных хромосом в разные гаметы и независимое поведение бивалентов в первом мейотическом делении. Кроссинговер обеспечивает перекомбинацию отцовских и материнских аллелей в группах сцепления. Ввиду того что перекрест хромосом может происходить в разных участках, кроссинговер в каждом отдельном случае приводит к обмену разным по количеству генетическим материалом. Необходимо отметить также возможность возникновения нескольких перекрестов между двумя хрома/гидами и участия в обмене более чем двух хроматид бивалента. Отмеченные особенности кроссинговера делают этот процесс эффективным механизмом перекомбинации аллелей. Расхождение гомологичных хромосом в разные гаметы в случае гетерозиготности приводит к образованию гамет, различающихся по аллелям отдельных генов. Случайное расположение бивалентов в плоскости экватора веретена деления и последующее их расхождение в анафазе I мейоза обеспечивают перекомбинацию родительских групп сцепления в гаплоидном наборе гамет. Последние стадии овогенеза воспроизводятся и вне организма женщины, искусственной питательной среде. Это позволило осуществить зачатие человека «в пробирке». Перед овуляцией хирургическим путем яйцо извлекается из яичника и переносится в среду со сперматозоидами. Возникающая в результате оплодотворения зигота, будучи помещена в подходящую среду, осуществляет дробление. На стадии 8—16 бластомеров зародыш переносится в матку женщины-реципиента. Число успешных результатов такого рода в последнее время возрастает. Гаметогенез отличается высокой производительностью. За время половой жизни мужчина продуцирует не менее 500 млрд. сперматозоидов. На пятом месяце эмбриогенеза в зачатке женской половой железы насчитывается 6 000 000 клеток-предшественниц яйцеклеток. К началу репродуктивного периода в яичниках обнаруживается примерно 100 000 овоцитов. От момента полового созревания до прекращения гаметогенеза в яичниках созревает 300— 400 овоцитов. Вопрос 3 Угрица кишечная. Название: Тип Круглые черви, Nemathelminthes, Класс Собственно круглые черви, Nematoda, Вид Угрица кишечная, Strongyloides stercoralis. Особенности морфологии: Ø Половозрелая самка – 2-3 мм Ø Половозрелый самец – 0,7 мм Ø У самцов задний конец тела заострён и загнут на брюшную сторону Ø Рабдитные личинки имеют пищевод с 2 расширениями. Географическое распространение: страны с жарким и умеренным климатом, Закавказье, Средняя Азия, Молдавия, Украина. Экологическая характеристика: специфический, эндопаразит (полостной), временный, 1-хозяйный (человек). Цикл развития: рабдитные личинки с фекалиями – во внешнюю среду → питаются фекалиями, разлагающейся органикой → линяют → Филяриевидные личинки → Алиментарно / Перкутарно в человека, в кровь → в сердце → в лёгкие → половозрелые формы → в рот → в тонкую и двенадцатиперстную кишки. Оплодотворение в бронхах, трахее и кишках. Другие пути развития: 1. рабдитные личинки с фекалиями – во внешнюю среду → самцы и самки свободноживущего поколения, питающегося органическими веществами → оплодотворение → яйца → рабдитные личинки → по циклу свободноживущего поколения или в Филяриевидные личинки 2. рабдитные личинки не выходят из кишок → Филяриевидные личинки → цикл развития без выхода. Заболевание: стронгилоидоз: воспалительные процессы в коже, нарушение нормальной работы пищеварительной системы, истощение. Диагностика: обнаружение личинок в свежих, тёплых фекалиях. Профилактика: аналогична анкилостомозу Очаговость: нет. Билет 39 115. Критические периоды эмбриогенеза. Тератогенные факторы среды. Понятие о фенокопиях, примеры.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 600; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.252.243 (0.011 с.) |