Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип возможных перемещений при равновесии материальной системы. Общее уравнение статики.↑ ⇐ ПредыдущаяСтр 7 из 7 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Пусть материальная система находится в равновесии. Силы, действующие на каждую ее точку, уравновешиваются. Если – равнодействующая всех активных сил, приложенных к i -той точке, а – реакция связей этой точки, то (рис.65) Рис.65
Дадим системе какое-нибудь возможное перемещение. Все точки ее получат перемещения , , ,…, . Затем вычислим работу всех сил на этих перемещениях. Так как силы, приложенные к каждой точке уравновешиваются и , то сумма работ этих сил на перемещении будет равна нулю: . Значит и сумма работ всех сил, приложенных ко всем точкам, будет равна нулю . Если связи идеальные, то вторая сумма всегда равна нулю. Значит, (1) Этот результат, уравнение работ, называют общим уравнением статики. При равновесии материальной системы с идеальными и стационарными связями сумма работ всех активных, задаваемых, сил на любом возможном перемещении системы из положения равновесия равна нулю. Конечно, если у системы есть неидеальные связи, например, с трением, или упругие, вроде пружины, то в уравнение работ надо добавить возможную работу реакций этих связей. Принцип возможных перемещений можно записать в другой форме. Если возможные перемещения точек определить с помощью возможных скоростей: где время - произвольная бесконечно малая величина, то уравнение работ (1) запишется так , а, поделив его на получим , (2) где – углы между направлениями сил и направлениями векторов возможных скоростей точек приложения сил. Равенство (2) можно назвать принципом возможных скоростей, уравнением мощностей. Оно иногда бывает более удобным, так как используются конечные величины скоростей, а не бесконечно малые перемещения. Этот принцип, общее уравнение статики, позволяет решать задачи на исследование равновесного состояния системы, в частности – находить неизвестные реакции связей. Естественно, при этом возникает вопрос: как же так, ведь реакции идеальных связей не входят в уравнение работ? Выход прост – надо сделать тело свободным, реакции отнести к разряду активных сил и затем назначать такие возможные перемещения, чтобы эти неизвестные силы совершали работу. Общее уравнение статики – довольно эффективный метод и применять его, конечно, надо для исследования равновесия сложных систем; хотя и при решении обычных задач статики он оказывается тоже выгодным.
Уравнения Лагранжа. По определению (7) и (12) обобщенные силы . Сумма их или . Но на основании общего уравнения динамика (3), правая часть равенства равна нулю. И так как все (k = 1,2,3,…, s) отличны от нуля, то . Подставив значение обобщенной силы инерции (17), получим уравнение (k = 1,2,3,…, s). (18) Эти уравнения называются дифференциальными уравнениями движения в обобщенных координатах, уравнениями Лагранжа второго рода или просто – уравнениями Лагранжа. Количество этих уравнений равно числу степеней свободы материальной системы. Если система консервативная и движется под действием сил потенциального поля, когда обобщенные силы , уравнения Лагранжа можно составить по форме (19) или (k = 1,2,3,…, s), (20) где L = T – П называется функцией Лагранжа (предполагается, что потенциальная энергия П не зависит от обобщенных скоростей). Нередко при исследовании движения материальных систем оказывается, что некоторые обобщенные координаты qj не входят явно в функцию Лагранжа (или в Т и П). Такие координаты называют циклическими. Уравнения Лагранжа, соответствующие этим координатам, получаются проще. Так как и , то Первый интеграл таких уравнений находится сразу. Он называется циклическим интегралом: (21) Дальнейшие исследования и преобразования уравнений Лагранжа составляют предмет специального раздела теоретической механики – «Аналитическая механика». Уравнения Лагранжа обладают целым рядом достоинств в сравнении с другими способами исследования движения систем. Основные достоинства: методика составления уравнений одинакова во всех задачах, реакции идеальных связей не учитываются при решении задач. И еще одно – эти уравнения можно использовать для исследования не только механических, но и других физических систем (электрических, электромагнитных, оптических и др.).
Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное Иваном Мещерским в 1904 году. Оно имеет вид: , где: § m — переменная масса тела; § v — скорость движения тела переменной массы; § F — внешние силы (сопротивление среды и т. п.); § — относительная скорость отделяющихся частиц; § — относительная скорость присоединяющихся частиц; § — секундный расход массы; § — секундный приход массы.
Реактивная тяга — сила, возникающая в результате взаимодействия двигательной установки с истекающей из сопла камеры сгорания струей расширяющихся продуктов сгорания, обладающих кинетической энергией.[1] Природа возникновения реактивной тяги заключена в физико-химических процессах протекающих в двигательной установке при сгорании топлива. Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения - центр среза сопла двигателя, а направление - противоположноевектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга: § приложена непосредственно к корпусу реактивного двигателя; § обеспечивает передвижение ракетного двигателя и связанного с ним аппарата в сторону, противоположную направлению реактивной струи.[2]
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1041; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.40.234 (0.009 с.) |