Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Технологические процессы как объекты автоматического управления. Возмущения, управляющие воздействия, входы и выходы. Обобщенная структурная схема.



Производственные процессы характеризуются множеством регулируемых величин: температурой, давлением, расходом, концентрацией и т. д., которые называются параметрами процесса. Чтобы технологическое оборудование работало в требуемом режиме, то есть с высоким КПД, с заданной производительностью, давало продукцию необходимого качества и работало надежно, необходимо поддерживать величины, характеризующие процесс, в большинстве случаев постоянными. Эта важнейшая задача возложена на промышленные системы автоматического регулирования и стабилизации технологических процессов.

Промышленные системы регулирования занимают второй уровень современных иерархических систем управления технологическими процессами. Их главная задача состоит в том, чтобы стабилизировать технологические параметры на заданном уровне. Этим занимаются системы автоматической стабилизации. В этих системах сигнал задания (установка регулятора) остается постоянным в течении длительного времени работы. Другой, не менее важной задачей, является задача программного управления технологическим агрегатом, что обеспечивает переход на новые режимы работы. Решение этой проблемы осуществляется с помощью той же системы автоматической стабилизации, задание которой изменяется от программного задатчика.

 

В современных технологических комплексах имеются сотни и тысячи контуров регулирования, от качества работы которых во многом зависит качество выдаваемой продукции. Поэтому для большинства промышленных САР необходима достаточно высокая точность их работы ±1-1,5%. При этом главное назначение системы стабилизации - это компенсация внешних возмущающих воздействий, действующих на объект управления.

Структурная схема одноконтурной САР промышленным объектом управления приведена на рис. 2.1. Основными элементами ее являются: АР - автоматический регулятор, УМ - усилитель мощности, ИМ - исполнительный механизм, РО - регулируемый орган, СОУ - собственно объект управления, Д - датчик, НП - нормирующий преобразователь, ЗД - задатчик, ЭС - элемент сравнения. Обозначение переменных: Yз- задающий сигнал, e - ошибка регулирования, Up- выходной сигнал регулятора, Uy- управляющее напряжение, h - перемещение регулирующего органа, Qr- расход вещества или энергии, F - возмущающее воздействие, T - регулируемый параметр (например температура), Yос- сигнал обратной связи (выходное напряжение или ток преобразователя).

Характерной особенностью схемы является наличие нормирующего преобразователя НП, обеспечивающего работу автоматического регулятора со стандартными значениями тока (0ё5 mA) или напряжения (0ё10 В).

Нормирующий преобразователь выполняет следующие функции:

1) преобразует нестандартный входной сигнал (mB) в стандартный выходной сигнал;2) осуществляет фильтрацию входного сигнала;3) осуществляет линеаризацию статической характеристики датчика с целью получения линейного диапазона;4) применительно к термопаре, осуществляет температурную компенсацию холодного спая термопары.

По характеру протекания технологических процессов объекты управления делятся на циклические, непрерывно- циклические и непрерывные. Локальные системы наиболее широко применяются для управления объектами второго и третьего типов. По характеру установившегося значения выходной величины объекта при действии на его вход ступенчатого сигнала выделяют объекты с самовыравниванием и без самовыравнивания.

По количеству входных и выходных величин и их взаимосвязи объекты делятся не одномерные (один вход и один выход) и многомерные. Последние могут быть многосвязными - когда наблюдается взаимное влияние каналов регулирования друг на друга, либо несвязные - взаимосвязь между каналами которых мала. По виду статических характеристик объекты делятся на линейные и нелинейные. В последних статическая характеристика может быть гладкой, линеаризуемой в окрестности заданной точки, либо носить существенно нелинейный характер. При наличии в объекте нескольких нелинейностей, графическим методом определяется его суммарная нелинейная характеристика. Большинство систем регулирования относиться к классу систем автоматической стабилизации режима работы объекта относительно его рабочей точки (относительно номинального режима работы). В этом случае в процессе работы отклонения переменных, относительно рабочей точки будут малы, что позволяет использовать линейные модели объекта управления. Однако, при смене рабочей точки происходит изменение коэффициента усиления объекта, что будет негативно влиять на динамику замкнутой системы.



Поделиться:


Последнее изменение этой страницы: 2017-02-09; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.108 (0.006 с.)