Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электромагнитные измерительные преобразователи.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Отличительной особенностью электромагнитных приборов, обусловливающей их широкое применение для измерений в цепях переменного и постоянного токов в качестве щитовых амперметров и вольтметров, являются их высокие эксплуатационные качества: простота конструкции, низкая стоимость, высокая надежность, устойчивость к электрическим перегрузкам, широкий диапазон измеряемых величин. Основным недостатком этих приборов является невысокая точность (отечественные электромагнитные приборы выпускаются с классами точности до 0,5). Все электромагнитные приборы в зависимости от конструктивного исполнения и характера движения их подвижной части могут быть разделены на резонансные и нерезонансные. Каждая из этих групп приборов в свою очередь делится на две подгруппы: поляризованные и неполяризованные (в поляризованных приборах кроме намагничивающей катушки используются постоянные магниты). Так как резонансные электромагнитные приборы в настоящее время используются очень редко, то в настоящем пособии они не рассматриваются. Здесь рассмотрены лишь неполяризованные нерезонансные электромагнитные преобразователи, наиболее широко применяемые в электроизмерительной технике. Основу этих приборов составляют электромагнитные измерительные механизмы, отличающиеся как по конструктивному исполнению, так и по своим свойствам и параметрам. Принцип действия всех электромагнитных преобразователей основан на взаимодействии магнитного поля тока, протекающего в катушке, с ферромагнитным сердечником. Электромагнитные ИП могут быть выполнены так, что в результате взаимодействия магнитного поля катушки с током и ферромагнитного сердечника последний будет намагничиваться одноименно с другим неподвижным сердечником и отталкиваться от него (так называемые преобразователи отталкивающего действия), или же таким образом, что в результате воздействия магнитного поля катушки с током на ферромагнитный сердечник он будет втягиваться в магнитное поле катушки (преобразователь втяжного действия). Все конструктивные разновидности электромагнитных ИП можно свести к двум основным типам
Преобразователи с плоской катушкой (рисунок 5,а) состоят из катушки 2, в магнитном поле которой находится ферромагнитный сердечник 1 в форме усеченного диска или язычка, эксцентрически закрепленный на оси подвижной части. При протекании по катушке тока ферромагнитный сердечник втягивается в магнитный зазор катушки, поворачивая при этом ось 3 с закрепленным на ней успокоителем 4 и стрелку 5 в сторону увеличения показаний. Регулировка угла отклонения подвижной части осуществляется с помощью магнитного шунта 6. Преобразователи с плоской катушкой менее технологичны в изготовлении, чем механизмы с круглой катушкой, однако они обладают повышенной чувствительностью, меньшими габаритами и массой. Преобразователи с круглой катушкой (рисунок 5,б) состоят из катушки 1, подвижного 2 и неподвижного 3 ферромагнитных сердечников, форма которых определяется необходимостью получения требуемого характера шкалы преобразователя. При протекании по катушке тока подвижный и неподвижный сердечники намагничиваются одноименно. Подвижный сердечник отталкивается от неподвижного, поворачиваясь вместе с осью 4 и закрепленной на ней стрелкой 6. Причем сила отталкивания оказывается прямо пропорциональной значению тока, протекающего по катушке. Противодействующий момент создается с помощью спиральной пружины 5. Успокоение подвижной части осуществляется воздушным (крыльчатым) успокоителем, состоящим из закрытой камеры 7 и легкого алюминиевого крыла 8, жестко связанного с осью 4 подвижной части. Достоинством таких преобразователей является их простота, высокая технологичность изготовления и возможность получения требуемого характера шкалы (за счет выбора формы сердечников. Конструктивно сердечники могут быть цилиндрическими, призматическими или иметь другую форму). Чувствительность таких преобразователей оказывается ниже, чем у преобразователей с плоской катушкой. Из проведенного рассмотрения можно сделать некоторые выводы о свойствах, достоинствах и недостатках электромагнитных преобразователей: - электромагнитные преобразователи могут применяться для измерений в цепях как постоянного, так и переменного токов, так как направление отклонения подвижной части не зависит от направления тока в обмотке. При применении их для измерений в цепях переменного тока они измеряют среднеквадратические значения тока или напряжения; - точность электромагнитных преобразователей сравнительно невысокая вследствие влияния потерь в сердечниках (на гистерезис и вихревые токи), внешних магнитных полей, температуры окружающей среды и частоты измеряемых электрических величин; - чувствительность электромагнитных преобразователей за исключением преобразователей с замкнутым магнитопроводом невысока, следовательно, собственное потребление мощности от источников преобразуемых сигналов у них довольно значительное; - функция преобразования электромагнитных преобразователей по своему характеру является квадратичной, однако соответствующим выбором формы и местом расположения сердечника, т.е. закона изменения индуктивности при изменении угла поворота подвижной части, можно получить практически равномерную шкалу на участке от 20 до 100 % от ее верхнего предела; - электромагнитные преобразователи наиболее просты по своей конструкции, имеют низкую стоимость и надежны в работе; - электромагнитные преобразователи способны выдерживать длительные электрические перегрузки, так как токоподводящими элементами у них являются медные проводники соответствующего сечения, а не упругие элементы, создающие противодействующий момент МПР и первыми выходящие из строя при перегрузках в преобразователях других групп; - диапазон рабочих частот для электромагнитных преобразователей ограничен сверху частотами порядка нескольких десятков килогерц из-за возникновения большой частотной погрешности на высоких частотах вследствие влияния вихревых токов в сердечнике и других металлических деталей преобразователя, а также вследствие изменения индуктивного сопротивления катушки при изменении частоты. Для уменьшения дополнительных частотных погрешностей сердечники и магнитопроводы электромагнитных преобразователей выполняются из магнитомягких материалов с высоким удельным сопротивлением (пермаллоев). Существуют также электромагнитные логометрические преобразователи, которые применяются в фазометрах, частотомерах, фарадометрах и т.п. Их основные свойства аналогичны свойствам преобразователей с механическим противодействующим моментом. Электромагнитные приборы находят широкое применение в практике электрических измерений главным образом в виде различных щитовых и лабораторных амперметров и вольтметров переменного тока. Кроме того, на базе логометрических преобразователей создаются фазометры, частотомеры и фарадометры. Амперметры. Электромагнитные амперметры образуются путем непосредственного последовательного включения преобразователя в цепь измеряемого тока. Они используются для измерения сравнительно небольших токов, так как при больших токах сильное влияние на показания приборов оказывают магнитные поля токопроводящих проходов. Щитовые амперметры, как правило, изготавливаются однопредельными. Лабораторные приборы могут иметь несколько пределов измерений, которые изменяются путей секционирования обмотки катушки и включения секций последовательно или параллельно. Для расширения пределов измерения амперметров на большие токи используются измерительные трансформаторы тока. Вольтметры. Вольтметры образуются путем последовательного включения электромагнитного преобразователя и добавочного резистора RД. При этом для уменьшения температурной погрешности из-за изменения сопротивления цепи протекания измеряемого тока отношение сопротивления добавочного резистора RД, выполняемого обычно из манганина, к сопротивлению медного провода катушки не должно быть меньше определенного значения, задаваемого допустимой температурной погрешностью. Поэтому в вольтметрах, предназначенных для измерения малых напряжений, приходится уменьшать сопротивление катушки за счет уменьшения числа ее витков, что ведет к снижению чувствительности приборов. Для избежания этого, расширение пределов измерения вольтметров в сторону малых напряжений осуществляется, как правило, не за счет изменения RД, а путем секционирования катушек и перехода с последовательного включения секций на параллельное. Расширение пределов измерений в сторону больших напряжений осуществляется до 600 В с помощью добавочных резисторов, а на более высокие напряжения - с помощью измерительных трансформаторов напряжения. Из-за различного характера частотной зависимости добавочного сопротивления RД и сопротивления катушки у вольтметров могут появляться дополнительные (по сравнению с амперметрами) частотные погрешности. В проводнике, пересекающем силовые линии поля, индуцируется ЭДС, пропорциональная скорости движения проводника. При этом направление тока, возникающего в проводнике, перпендикулярно к направлению движения проводника и направлению магнитного поля. Это известный закон электромагнитной индукции — закон Фарадея. Если заменить проводник потоком проводящей жидкости, текущей между полюсами магнита, и измерять ЭДС, наведённую в жидкости по закону Фарадея, можно получить принципиальную схему электромагнитного расходомера, предложенную ещё самим Фарадеем. Таким образом, электромагнитные расходомеры могут быть выполнены как с постоянными, так и с электромагнитными, питаемыми переменным током частотой. Эти электромагнитные расходомеры имеют свои достоинства и недостатки, определяющие области их применения Назначение и схемы АЦП. 1. Назначение и схемы АЦП. Аналогово-цифровые преобразователи В информационных и управляющих системах часть (или вся) информация от датчиков бывает представлена в аналоговой форме. Для ее ввода в цифровые ЭВМ и цифровое управляющее устройство широко применяются аналогово-цифровые преобразователи (АЦП). В большинстве случаев АЦП выполняют преобразование входного напряжения или тока в двоичный цифровой код. АЦП последовательного приближения (АЦППП). Структурная схема АЦППП приведена на рисунке. Схема работает следующим образом. Входной аналоговый сигнал Uвх перед началом преобразования запоминается схемой выборки – хранения ВХ, что необходимо, так как в процессе преобразования необходимо изменение аналогового сигнала. Далее по команде “Пуск” с помощью сдвигового регистра последовательно во времени каждый триггер Ti, начиная со старшего разряда, переводит в положение 1 соответствующий разряд ЦАП. Напряжение U1 (или ток) с выхода ЦАП сравнивается с входным аналоговым сигналом с помощью компаратора КП. Если U0 > U1, на выходе компаратора сохраняется низкий уровень и в триггере сохраняется единица, при U0 < U1 срабатывает компаратор и переводит триггер в положение 0. После окончания цикла на выходах триггеров получается двоичный код, соответствующий (при идеальных элементах) U0 с точностью до половины младшего разряда. Погрешность АЦППП определяется неточностью ЦАП, зоной нечувствительности и смещением нуля компаратора, а также погрешностью схемы выборки – хранения. АЦП параллельного типа (АЦПП). Его структурная схема приведена на рис. Здесь входная аналоговая величина U0 с выхода схемы ВХ сравнивается с помощью 2n+1 – 1 компараторов с 2(2n-1) эталонными уровнями, образованными
делителями из резисторов равного сопротивления. При этом срабатывают m младших компараторов, образующих на выходах схем И-НЕ нормальный единичный код, затем который с помощью специального дешифратора ДШ преобразуется в двоичный выходной сигнал. Погрешность АЦПП определяется неточностью и нестабильностью эталонного напряжения, резистивного делителя и погрешностями компараторов. Значительную роль могут играть входные токи компараторов, если делитель недостаточно низкоомный. Билет4
|
||
Последнее изменение этой страницы: 2017-02-09; просмотров: 981; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.219.203 (0.012 с.) |