![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электромагнитное поле. Уравнения Максвелла. Плоская электромагнитная волна.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Уравнения Максвелла для электромагнитного поля В основе теории Максвелла лежат рассмотренные выше четыре уравнения: 1. Электрическое поле может быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е = Е Q+ Е B. Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B определяется выражением: 2. Обобщенная теорема о циркуляции вектора Н: Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями. 3. Теорема Гаусса для поля D: Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью r, то формула запишется в виде: 4. Теорема Гаусса для поля В: Итак, полная система уравнений Максвелла в интегральной форме:
Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды): D =e0e E, В= m0m Н, j =g E, где e0 и m0 — соответственно электрическая и магнитная постоянные, e и m— соответственно диэлектрическая и магнитная проницаемости, g — удельная проводимость вещества. Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
10. Интерференция. Когерентность волн. Условия максимума и минимума интерференции. <?>Принцип получения когерентных световых волн<?>.
Интерференция волн
Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками S1 и S2 (рис.221), колеблющимися с одинаковыми амплитудой ао и частотой СО и постоянной разностью фаз. Согласно уравнению сферической волны
где r 1 и r 2 — расстояния от источников волн до рассматриваемой точки В, k — волновое число, (j1 и j2 — начальные фазы обеих накладывающихся сферических волн. Амплитуда результирующей волны в точке В равна: Так как для когерентных источников разность начальных фаз (j1-j2)=const, то результат наложения двух волн в различных точках зависит от величины D= r 1- r 2, называемой разностью хода волн. В точках, где k (r 1 -r 2 )- (j1-j2)=±2mp (m=0, 1,2,...), наблюдается интерференционный максимум: амплитуда результирующего колебания A=A 0 /r 1 +A0/r 2. В точках, где k (r 1- r 2) - (j1-j2)= ±(2m+1)p (m=0, 1,2,...), наблюдается интерференционный минимум: амплитуда результирующего колебания А=А 0 /r 1 —А 0 /r 2│(m=0, 1, 2,...,) называется соответственно порядком интерференционного максимума или минимума. Эти Условия сводятся к тому, что r 1 -r 2=const. Интерференция света Возникает при сложении двух (или более) световых волн, когда в одних местах волны гасят друг друга, а в других – усиливают, т.е. происходит перераспределение энергии вдоль фронта волны с образованием максимумов и минимумов интенсивности. Для световых волн максимумы ярко освещены, минимумы – слабо (темные области). Интерференционная картина устойчива во времени.
11. Интерференция света в тонких пленках, примеры ее наблюдения и применения.
При падении на тонкую прозрачную пластинку (пленку) (рис.) луч в точке А делится на два: отраженный – 1 и преломленный – 2, который после отражения от нижней плоскости пленки в точке О и преломления в точке С идет параллельно лучу 1. Попадая на линзу (хрусталик глаза), эти лучи собираются водной точке и интерферируют.
Здесь учитывается, что при отражении волны 1 в точке А от оптически более плотной среды происходит увеличение ее фазы на π, что равносильно дополнительному пути В проходящем свете интерферируют лучи, отраженные от оптически менее плотной среды, так что разность хода уменьшается на Кольца Ньютона
Разность хода этих лучей: Радиусы светлых колец в отраженном свете (или темных в проходящем): радиусы темных колец в отраженном свете (или светлых в проходящем): Полосы равного наклона (интерференция от плоскопараллельной пластинки)
Лучи 1' и 1 ", отразившиеся от верхней и нижней граней пластинки (рис.250), параллельны друг другу, так как пластинка плоскопараллельна. Следовательно, интерферирующие лучи 1 ' и 1 " «пересекаются» только в бесконечности, поэтому говорят, что полосы равного наклона локализованы в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1' и 1" соберутся в фокусе F линзы (на рис. 250 ее оптическая ось параллельна лучам 1' и 1"), в эту же точку придут и другие лучи (на рис.250 — луч 2), параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой точке Р фокальной плоскости линзы. Легко показать, что если оптическая ось линзы перпендикулярна поверхности пластинки, то полосы равного наклона будут иметь вид концентрических колец с центром в фокусе линзы. Применение интерференции света Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны l0.Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия). Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий.
хода — равна (2m+1)l0/2. Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д.
|
|||||||
Последнее изменение этой страницы: 2017-01-23; просмотров: 472; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.160.206 (0.013 с.) |