ТОП 10:

Ортогональная система трех плоскостей проекций



В практике для изображения геометрических объектов, решения некоторых задач возникает необходимость использовать третью плоскость проекций p3, перпендикулярную p1 и p2. p3профильная плоскость проекций. А3 – профильная проекция точки А.

Система трех плоскостей проекций делит пространство на 8 октантов, которые условно обозначают согласно рис. 2.3.


Рис. 2.3. Система 3х плоскостей проекций.

В первом октанте все координаты положительные.

Чтобы перейти к чертежу на плоскости, совместим все три плоскости в одну плоскость p2 по направлениям, указанным на чертеже. Плоскость p1 вращаем вокруг оси x12 на 90°, плоскость p3 – вокруг оси z23 на 90° против часовой стрелки. При этом ось y раздваивается.

Получается комплексный чертеж точки (рис. 2.4).


Рис. 2.4. Комплексный чертеж.

На комплексном чертеже все проекции точки А1, А2, А3 находятся в проекционной связи. Каждая проекция точки определяется двумя координатами:

А1x, y1

А2x, z

A3y3, z

В данном примере x = 30, y = 25, z = 35. Третья профильная проекция точки может быть определена по линиям связи от проекций А1 и А2. Проекции А2 и А3 расположены на одной горизонтальной линии связи, которая определяется координатой z (отрезок OAz), а от горизонтальной проекции А1 проводим линию связи перпендикулярно оси y1, отрезок OAy (координата y) переносим против часовой стрелки на горизонтальную ось y3 и восставляем перпендикуляр (линию связи) до пересечения с горизонтальной линией связи от А2. Координата у от А1 переносится на горизонтальную ось у3 всегда против часовой стрелки, т.к. плоскость p3 при совмещении с p2 разворачивается против часовой стрелки.

Профильную проекцию А3 можно определить, откладывая координаты на соответствующих осях проекций с учетом знака.

Знаки координат зависят от того, в каком октанте расположена точка.

Координаты Октанты
  I II III IV V VI VII VIII
x + + + + - - - -
y + - - + + - - +
z + + - - + + - -

 

 

2.3 Точки разных углов пространства.
Точки частного положения

Если точка не принадлежит ни одной плоскости проекций, она занимает общее положение.

Если точка расположена в плоскости проекций или на оси проекций, она занимает частное положение.

Рассмотрим ряд точек общего положения (рис. 2.5, 2.6).

Точка В (x = 30, y = 25, z = -35) – IV октант. Проекция В1 расположена ниже оси x на положительном направлении оси у. Траектория В2 расположена тоже ниже оси х на отрицательном направлении оси z. В3 определяется по линиям связи от В1 и В2 или по координатам y = 25, z = -35.

Точка С (x = -30, y = 40, z = 30) – V октант. Проекция С1 расположена справа от оси z на отрицательном направлении оси x и ниже оси х на положительном направлении оси у. Проекция В2 расположена выше оси х на положительном направлении оси


Рис. 2.5. Точки в 4 и 5 октанте.


Рис. 2.6. Комплексный чертеж точек в 4 и 5 октантах.

z. С3 определяется по линиям связи от С1 и С2 или по координатам y = 40, z = 30.

Рассмотрим точки частного положения, расположенные на плоскостях и осях проекций.

Если координата х = 0, то точка принадлежит плоскости p3.

Если координата у = 0, то точка принадлежит плоскости p2.

Если координата z = 0, то точка принадлежит плоскости p1.

Рассмотрим ряд точек частного положения (рис. 2.7, 2.8).


Рис. 2.7. Точки частного положения.

Точка D (x = 0, y = 30, z = 20) принадлежит плоскости p3 и совпадает с профильной проекцией D3, проекции D1 и D2 расположены соответственно на осях у и z.

Точка Е (x = 30, y = 0, z = 35) принадлежит плоскости p2 и совпадает с фронтальной проекцией Е2, проекции Е1 и Е3 расположены соответственно на осях x и z.

Точка К (x = 40, y = 25, z = 0) принадлежит плоскости p1 и совпадает с горизонтальной проекцией К1, проекции К2 и К3 расположены соответственно на осях x и у.

Точка L (x = 0, y = 5, z = 40) расположена на оси z.


Рис. 2.8. Комплексный чертеж точек частного положения.

 

 

Вопросы и задачи для самоконтроля

 

Сколько проекций точки вполне определяют ее положение в пространстве?

Какая координата точки определяет ее расстояние:

a) до горизонтальной плоскости проекций p1;

b) до фронтальной плоскости проекций p2;

c) до профильной плоскости проекций p3?

Выполнить комплексный чертеж точек и указать, в каком октанте они расположены:

a) A (x = 50, y = -10, z = -30);

b) B (x = -40, y = -20, z = 35);

c) C (x = -20, y = -30, z = -45);

d) D (x = -30, y = 0, z = -50);

e) E (x = 0, y = -40, z = 25).


ГЛАВА 3. ПРЯМЫЕ ЛИНИИ

Проекции прямой линии

Прямая линия в пространстве может быть задана двумя точками. Поэтому эпюр прямой определяется эпюром принадлежащих ей точек.

Рассмотрим проекции прямой, заданной отрезком AB (рис. 3.1, 3.2).


Рис. 3.1. Прямая общего положения.

А1В1 – горизонтальная проекция прямой;.

А2В2 – фронтальная проекция прямой;.

А3В3 – профильная проекция прямой.

Две проекции прямой вполне определяют ее положение в пространстве. По рис. 3.1 каждая из проекций прямой определяет плоскость, перпендикулярную плоскости проекции (например, А1В1АВ, А2В2АВ), которые пересекаются по линии являющейся прямой АВ.


Рис. 3.2. Комплексный чертеж прямой общего положения.

Прямая, определяемая отрезком АВ, непараллельная ни одной из плоскостей проекций и является прямой общего положения. Проекции такой прямой расположены к осям проекций произвольно.

 

 




Последнее изменение этой страницы: 2016-12-27; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь - 54.80.10.56