Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Взаимное расположение двух плоскостей, прямой линии и плоскостиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Две плоскости в пространстве могут быть параллельны, в частном случае совпадать, пересекаться, в частном случае бать перпендикулярными. Аналогично могут быть расположены прямая линия относительно плоскости.
Параллельные плоскости.
Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости (рис. 4.10). При задании плоскости следами две плоскости параллельны, если параллельны их одноимённые следы (рис. 4.10). Задача: Через току К провести плоскость параллельную заданной плоскости Т (рис. 4.11). Решение: Через точку проводим горизонталь h параллельную заданной плоскости Т, т.е. h1 параллельно Т1. Найдём фронтальный след горизонтали N (N1, N2). Через фронтальный след горизонтали N2 проведём фронтальный след искомой плоскости Г2 параллельно фронтальному следу плоскости Т2, определяется точка схода следов Гx. Проводим горизонтальный след плоскости Г1 из Гx параллельно горизонтальному следу Т2. Прямая линия, параллельная плоскости. Прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в плоскости (рис. 4.12). Через каждую точку пространства можно провести бесконечное множество прямых, параллельных данной плоскости Р. Задача: Через точку С провести прямую а параллельную плоскости Р (рис. 4.13). Решение: Одну из проекций искомой прямой а 2 проведём произвольно через точку С 2. Определим в данной плоскости P прямую параллельную прямой а. Горизонтальная проекция прямой а 1 будет параллельна горизонтальной проекции прямой в плоскости а 2 || (1222) и а 1 || (1121).
Пересекающиеся плоскости. Две плоскости пересекаются по прямой линии, для построения которой достаточно, или определить две общие для плоскостей точки, или одну точку и направление линии пересечения. Рассмотрим задачи на построение проекций линии пересечения плоскостей и их положения относительно плоскостей проекций. 1. Если плоскости заданы следами и следы пересекаются в пределах чертежа (рис. 4.14а) то, две точки линии пересечения определяются на пересечение одноимённых следов. Точка 1 – пересечение горизонтальных следов, точка 2 – пересечение фронтальных следов. Линия l (1112) - линия пересечения плоскостей l и å. 2. Один из частных случаев пересечения плоскостей, когда одна из них является проецирующей плоскостью (рис. 4.14б). Задача сводиться к определению второй проекции линии, принадлежащей и проецирующей плоскости, и плоскости общего положения. Определяем точки пересечения соответствующего следа проецирующей плоскости с плоскостью общего положения точки 1 и 2. По линиям связи определяем вторую проекцию. Затем необходимо определить видимость отсеков плоскости общего положения относительно линии пересечения. 3. В некоторых случаях линия пересечения плоскостей является линией частного положения (рис. 4.14в). Рассмотрим задачи на пересечение плоскостей по горизонтали. В первой задаче одна из плоскостей l является горизонтальной плоскостью уровня, поэтому фронтальная линия проекции пересечения h 2 совпадает со следом этой плоскости и является горизонталью. Горизонтальная проекция определяется по точке 1 пересечения следов и направлению h 1 || l1. Во второй задаче горизонтальные следы плоскостей общего положения параллельны l1 || å1. Следовательно, горизонтальная проекция линии пересечения будет им параллельна h 1 || l1 || å1, а фронтальная будет проходить через точку 1 пересечения фронтальных следов. Аналогичны случаи пересечения по фронтали. Существуют другие частные случаи пересечения плоскостей, когда линией пересечения являются проецирующие прямые. 4. Общий случай пересечение плоскостей, когда в пределах чертежа сразу не определяются общие для данных плоскостей точки. Для решения такой задачи используются вспомогательные секущие плоскости обычно частного положения – или плоскости уровня, или проецирующие. Рассмотрим пример на рис. 4.15. Даны две плоскости, заданные параллельными прямыми (а || b) и треугольником АВС. Для определения двух общих точек данных плоскостей решаем задачу по алгоритму: 1. Вводим первую вспомогательную горизонтальную плоскость уровня å. 2. Строим линии пересечения каждой данной плоскости со вспомогательной (а || b) Ç å ® h å (ABC) Ç å ® h å. Эти линии являются горизонталями данных плоскостей. 3. Определяем точку пересечения линии пересечения. Точка I – общая для данных плоскостей. 4. Для определения ещё одной общей точки выводим вторую вспомогательную секущую плоскость уровня. l Выполним те же построения и определим вторую общую точку II. 5. Соединяем получившиеся точки I и II, Которые определяют линии пересечения плоскостей l (l 1, l 2). При решении некоторых задач удобнее использовать вспомогательные проецирующие плоскости.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 584; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.221.114 (0.01 с.) |