Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лабораторная работа № 6. Численное решение обыкновенных дифференциальных уравненийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Задание: Найти численное решение задачи Коши для данного дифференциального уравнения и начального условия на отрезке с шагом . Использовать метод, указанный преподавателем.
Вопросы для самоподготовки 1. Общая постановка задачи Коши. 2. Что является решением задачи Коши? Каков его геометрический смысл? 3. В чём состоит численное решение задачи Коши? 4. Метод Эйлера (алгоритм, геометрическая интерпретация, программа). 5. Метод Рунге-Кутта второго порядка (алгоритм, геометрическая интерпретация, программа). 6. Метод Эйлера-Коши (алгоритм, геометрическая интерпретация, программа).
Лабораторная работа № 7. Численное решение дифференциальных уравнений в частных производных
Задание: Методом сеток решить уравнение теплопроводности - диффузии = при заданных начальных условиях U(x,0)=f(x) и граничных условиях U(0,t)= , U(0.6,t)= , где tÎ[0,0.01]. Решение выполнить при шаге по длине - h=0.1, а шаг по времени - t, выбрать самостоятельно. Построить график изменения температуры по длине для каждого шага по времени.
Вопросы для самоподготовки
1. Классификация дифференциальных уравнений в частных производных. 2. Начальные условия. Типы граничных условий. 3. Конечно-разностные аппроксимации производных первого и второго порядка. 4. Построение разностных схем для уравнений с частными производными. Шаблоны. 5. Явная разностная схема для решения одномерного уравнения диффузии – теплопроводности. Понятие устойчивости вычислительной схемы. 6. Неявная разностная схема для решения одномерного уравнения диффузии – теплопроводности.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.156.17 (0.012 с.) |