Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Геометрический и физический смысл производной

Поиск

Тангенс угла наклона касательной прямой

Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную(постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.

Основная статья: Касательная прямая

Если функция имеет конечную производную в точке то в окрестности её можно приблизить линейной функцией

Функция называется касательной к в точке Число является угловым коэффициентом илитангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть — закон прямолинейного движения. Тогда выражает мгновенную скоростьдвижения в момент времени Вторая производная выражает мгновенное ускорение в момент времени

Вообще производная функции в точке выражает скорость изменения функции в точке , то есть скорость протекания процесса, описанного зависимостью

55) Теплоемкость – есть производная теплоты по температуре, т.е. C(t) = Q/(t)

d(l)=m/(l) - линейная плотность

K (t) = l /(t) - коэффициент линейного расширения

ω (t)= φ/(t) - угловая скорость

а (t)= ω/(t) - угловое ускорение

N(t) = A/(t) - мощность

56) Связь между дифференцируемостью и непрерывностью функции.

Докажем теорему, устанавливающую связь между дифференцируемостью и непрерывностью функции.

Теорема 7.1. Если функция y=f(x) дифференцируема в произвольной точке x0, то она непрерывна в этой точке.

Доказательство. Пусть функция y=f(x) дифференцируема в произвольной точке x0, т.е. имеет в этой точке производную (x0). Запишем приращение функции ∆y точке x0:

∆y = (x0) ∆ x + ∆ x, где →0 при ∆ x→0 (см. доказательство теоремы 6.1).

Пусть теперь ∆ x→0. Тогда, очевидно, и ∆y→0. Но это и означает, что функция y=f(x) непрерывна в точке x0. Теорема доказана.

Утверждение, обратное этой теореме, неверно: из непрерывности функции в данной точке не вытекает её дифференцируемость в этой точке. Существуют функции, непрерывные в некоторой точке, но не имеющие в этой точке производной. Примером такой функции служит функция

y= =

(см. рис.4).

Эта функция непрерывна в точке x = 0, но не дифференцируема в ней. Действительно, приращение этой функции в точке x = 0 есть

∆y = f(0+∆ x) ─ f(0) = f(∆ x) = ,

= = ,

т.е. в любой сколь угодно малой окрестности значения отношение принимает два различных значения: 1 и ─1. Это означает, что предел не существует, т.е. функция y= не имеет производной в точке x = 0, а, следовательно, график функции не имеет касательной в точке O(0;0) (поскольку угловой коэффициент касательной должен быть равен производной, но производной не существует).

Таблица производных. Гиперболические функции, их свойства и графики. Производные гиперболических и обратных к ним функций.



Поделиться:


Последнее изменение этой страницы: 2016-12-14; просмотров: 1241; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.70.200 (0.005 с.)