Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрический смысл производной↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги Поиск на нашем сайте
а) Геометрический смысл производной. Рассмотрим график функции y=f(x), дифференцируемой в точке x0 (рис. 13). Проведем через точки M0(x0,y0) и M(x0+▲x, y0+▲y) графика прямую l, и пусть B(угол Бэтта) - угол ее наклона к оси х. Тогда (1)▲y/(деленный)▲x=tg B(бэтта)
Рис. 13. Если ▲x стремится к нулю, то ▲y также стремится к нулю, и точка M приближается к точке M0, а прямая l - к касательной l0(эль нулевая), образующей с осью x угол α(альфа). При этом равенство (1) принимает вид: (2) f ’(x0)=tgα’ откуда следует, что производная функции в точке равна тангенсу угла наклона касательной к графику функции в этой точке. Понятие дифференцируемости ф-ии Df: Ф-ия дифференцируема в точке х0, если приращение ф-ии в точке сможет быть представлено в виде: , А – const. Dh: Для дифференцирования ф-ии в т. х0, необходимо и достаточно, чтобы в этой точке существовала производная. Доказательство: (необходимость) (достаточность): Непрерывность и диф. Понятие дифференциала ф-ии. Геом.смысл приблеженных вычислений с помощью dy Опр. Дифференциалом ф-ии y=f(x) в точке х0 н-ся главная, линейная от-но ▲х, часть приращенная ф-ии в этой точке. Для обозначения дифференциала ф-ии используют символ dy. Из Df дифференцируемости следует, что приращение дифф. ф-ии можно представить в виде Из равенства нулю предела следует, что - б.м. более высшего порядка малости, чем , и Поскольку - б.м. одного порядка малости. - б.м. одного порядка малости - б.м. эквивылентные, т.е. Пусть
************** Zm1: и х – независимые переменные, т.е. Zm1: для независимых переменных. Правила диференц суммы,разн,произв,частн 1) ; 2) , где - постоянная; 3) ; 4) ; 5) если , а , то производная сложной функции находится по формуле , где индексы указывают, по какому аргументу производится дифференцирование. 38.Вычислен производных элемент.ф-ий: x^n,nЄN,cos,sin,tg,ctg, loga(основание)Х(а>0,a≠1,x>0) Th о произв сложной ф-ии Пусть: 1. - дифф. в точке y0. 2. - дифф. в точке х0. 3. тогда сложная ф-ия - дифф. в точке х0 и справедлива формула: Доказательство: 1. - дифф. в точке y0 2. - дифф. в точке х0 3. - дифф. в точке х0 а значит непрерывна в этой точке . 40.Производная ф-ий x^α, αЄR(прием логарифм. Диф) Th о производной обратной ф-ии Предложение: Если производная обратной функции g для ф-ции f существует в точке y0, то g’(y0)=1/f’(x0), где y0=f(x0) Доказательство: g(f(x))=x g’(f(x))=1 g’(f(x0))=g’(f(x0))*f’(x0)=1, g’(f(x0))=g(y0)=1/f’(x0) Теорема: Пусть ф-ция f строго монотонно и непрерывно отображает (a,b) в (а,b) тогда $ обратная ей ф-ция g, которая строго монотонно и непрерывно отображает (а,b) в (a,b). Если f диф-ма в точке x0Î(a,b) и f’(x0)¹0, то g диф-ма в точке y0=f(x0) и g’(y0)=1/f’(x0) Доказательство: Возьмем произвольную последовательность сходящуюся к y0: yN®y0, yN¹y0 => $ посл-ть xN: xN=g(yN), f(xN)=yN g(yN)-g(y0)/yN-yO = xN-xO/f(yN)-f(yO) = 1/f(yN)-f(yO)/xN-xO ® 1/f’(xo) при n®¥, получили при xN®xO g(yN)-g(yO)/yN-yO®1/f’(xO) => g’(уO)=1/f’(xO) 42.Произв ф-ии: arcsinx,arccosx,arctgx,acctgx,a^x(a>0,a≠1) 1) x®Arcsin x по теореме имеем Arcsin’x=1/Sin’y, где Sin y=x при условии, что Sin’y<0, получаем (используя производную синуса): Arcsin’x=1/Cos y, т.к. Arcsin: [-1,1]®[-П/2,П/2] и Cos:[-П/2,П/2]®[0,1], то Cos y³0 и, значит Arcsin’x = 1/Cos y = 1/(1-Sin2y)1/2 = 1/(1-x2)1/2 2) x®Arccos’x = -1/(1-x2)1/2 3) x®Arctg’x = 1/1+x2 4) x®Arcctg’x= -1/1+x2 5) y=a^x(в степени х) y ‘ =a^xlna Док-во:y=a^x является обратной для ф-ии x=loga(a-основание)y. Т.к. x’(y)=(1/y)loga(a-осн)e, то из соотношения loga(a-OCH)b=1/logb(b-OCH)a получим y’(x)=1/x’(y)=y/loga(a-OCH)e=a^x(в степени х)lna Производная высших порядков Определение: Если ф-ция f диф-ма в некоторой окрестности точки xO, то ф-ция f’(x):x®f’(x) в свою очередь может оказаться диф-мой в точке xO или даже в некоторой ее окрестности. Производная ф-ции f’(x) - называется второй производной (или производной порядка 2) ф-ции f в точке xO и обознача ется f”(x). Аналогично определяется третья и четвертая производная и так далее. Для единообразия обозначаем через fN(xO) - производную порядка n функции f в точке xO и при n=0 считаем f0(xO)=f(xO). Замечание: Cуществование производной порядка n требует того чтобы существовала производная пордка (n-1) уже в некоторой окрестности точки xO (следует из теоремы о связи диф-ти и непрерывности), в таком случае функция x®fN-1(x) непрерывна в точке xO, а при n³2 все производные порядка не выше (n-2) непрерывны в некоторой окрестности точки xO. Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)). Если существуют производные у’(х) и х’(t) то cуществует производная у’(t)=у’(х)*х’(t). Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)) Если существуют производные у’(х) и х’(t) то существует производная у’(t)=у’(х)*х’(t) +нужно док-во
|
|||||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 344; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.239.107 (0.007 с.) |