Грани числовых мн-в, св-во граней 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Грани числовых мн-в, св-во граней



Пусть Х – непустое мн-во веществ. чисел.

Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым

Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во.

Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено.

Точные грани числовых мн-в

Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х*, то оно min мн-ва Х

Пример Х=[0,1) то max[0,1) не $. min [0,1)=0

Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва.

Верхн. грань – supX=x*, а нижн. грань infX=x*

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. Чисел.

Th о сущ. т.в.г. и т.н.г.

Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.

Док-во: Пусть Х непустное мн-во, ограниченное сверху. Тогда Y- мн-во чисел, ограничивающих мн-во Х сверху, не пусто. Из определения верхней грани следует, что для любого х?Х и y?Y любого выполняется нер-во х≤у. В силу св-ва непрерывности вещ.чисел существует такое с, что для любых х и у выполняется нер-во х≤с≤у. Из первого нер-ва следует, что число с ограничивает мн-во Х сверху, т.е. является верхней гранью. Из второго нер-ва следует, что число ч явл.наименьшим из таких чисел,т.е. явл точной верхн.гранью. Теорема док-на. Аналогична теорема о т.н.г

Числовые последовательности, действия над ними

Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, …,хn, …(1,2,3,n –внизу) наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти. Над числовыми последовательностями можно выполнять след. Арифметические операции: произведение, сумма, разность, произведением на число, частное.

Огранич и неогранич пос-ти

Посл-ть {xn} наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xn£M "n (xn³m "n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.

Посл-ть {xn} наз-ся неогранич., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству ½xn½>А.

Б-м и б-б пос-ти: опр, осн. Св-ва, связь между ними

Пос-ть Xn н-ся б-б, если для любого положительного числа А существует номер N такой, что при всех n>N выполняется нер-во |Xn|>A, т.е. ("A>0)($N=N(A))("n>N):|Xn|>A Любая б-б пос-ть явл. неограниченной. Однако неограниченная пос-ть может и не быть б-б.

Пос-ть {An} н-ся б-м, если для любого положительного числа ε (сколь бы малым мы его ни взяли) существует номер N=N(ε) такой, что при всех n>N выполняется нер-во |An|< ε, т.е. ("ε>0)($N=N(ε))("n>N):|An|< ε

Св-ва: 1.Если {Xn} б-б пос-ть и все ее члены отличны от нуля, то по-сть {1\Xn} б-м и обратно. 2.Сумма и разность двух б-м пос-тей есть б-м пос-ть. (следствие: алгебраическая сумма любого конечного числа б-м постей есть б-м пость.) 3.Произведение двух б-м постей есть б-м пость.4. Произведение ограниченной пости на бесконечно малую пость есть пость б-м.

Понятие сходящихся постей, lim пости.

Опр Если для любого e >0 найдется такой номер N, для любого n >N:½xn-a½< e

Все посл-ти имеющие предел наз-ся сходящимися, а не имеющее его наз-ся расходящимися.

Опр Число а н-ся пределом пости Xn для любой точки окрестности а, сущ. N=N(e), такой, что все Эл-ты Xn с номерами n>N находятся в этой e-окрестности.

Основные св-ва сход. Постей

Теорема «Об единственности пределов»

Если посл-ть xn сходится, то она имеет единственный предел. Док-во (от противного)

{xn} имеет два разл. Предела a и b, а¹b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e= (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.

Теорема «Сходящаяся посл-ть ограничена»

Пусть посл-ть {xn}®а e >о N:"n>N½xn-a½<e эквивалентна а-e<xn<a+e "n>N => что каждый из членов посл-ти удовлетворяет неравенству½xn½£ c = max {½a-e½,½a+e½,½xn½,…,½xn-1½}

Теорема «Об арифметических дейсьвиях»

Пусть посл-ть {xn}®a,{yn}®b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:

а) предел lim(n®¥)(xn±yn)=a±b

б) предел lim(n®¥)(xn*yn)=a*b

в) предел lim(n®¥)(xn/yn)=a/b, b¹0

Док-во: а)xn±yn=(а+an)±(b+bn)=(a±b)+(an±bn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный a±b. Аналогично др. св-ва.

б) xn*yn=(а+an)*(b+bn)=ab+anb+abn+anbn

an*b – это произведение const на б/м

а*bn®0, anbn®0, как произведение б/м.

=> поэтому в правой части стоит сумма числа а*b+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xn*yn сводится к a*b

Предельный переход в нер-вах.

Монотонные пос-ти

Посл-ть {xn} наз-ся возр., если x1<…<xn<xn+1<…;

неубывающей, если x1£x2£…£xn£xn+1£…; убывающей, если x1>x2>…>xn>xn+1>…; невозр., если x1³x2³…³xn³xn+1³…

Все такие посл-ти наз-ся монотонными. Возр. и убыв. наз-ся строго монотонными

Монотонные посл-ти ограничены с одной стороны, по крайней мере. Неубывающие ограничены снизу, например 1 членом, а не возрастыющие ограничены сверху.

Число е

Рассмотрим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1). Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…

Док-ем формулу lim(n->∞)(1+1/n)^n(в степени n)=е

yN= ; zN=yN +

1) yN монотонно растет

2) yN<zN

3) zN-yN®0

4) zN монотонно убывает

Доказателство:

zN-zN+1 = yN + - yN+1 - = + - =

2=y1<yN<zN<z1=3

e = Lim yN = Lim zN - по лемме о вложенных промежутках имеем: yN< e <zN = yN + 1/(n*n!)

Если через qN обозначить отношение разности e - yN к числу 1/(n*n!), то можно записать e - yN = qN/(n*n!), заменяя yN его развернутым выражением получаем e = yN + qN/(n*n!), qÎ(0,1)

Число e иррационально:

Доказательство(от противного): Пусть e =m/n, mÎZ, nÎN

m/n = e = yN + qN/(n*n!)

m*(n-1)!= yN*n! + qN/n, где (m*(n-1)! & yN*n!)ÎZ, (qN/n)ÏZ => противоречие

Th о вложенных промежутках

Пусть на числовой прямой задана посл-ть отрезков [a1,b1],[a2,b2],…,[an,bn],…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. [an+1,bn+1]Ì[an,bn], "n=1,2,…;

2) Длины отрезков ®0 с ростом n, т.е. lim(n®¥)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

14.Понятие ф-ии, способы задания, классификация



Поделиться:


Последнее изменение этой страницы: 2016-06-26; просмотров: 228; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.0.24 (0.016 с.)