Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ортогональные проекции точки

Поиск

 

Прямоугольные проекции на две или три взаимно перпендикулярные плоскости принято называть ортогональными.

Зададим три взаимно перпендикулярные плоскости проекций и точку А в пространстве (Рис.2.1).

Рис. 2.1. Ортогональные проекции точки

V, H, W – плоскости проекций

Vфронтальная плоскость проекций

Hгоризонтальная плоскость проекций

Wпрофильная плоскость проекций

Линии пересечения плоскостей проекций X, Y, Z – оси проекций.

Для того, чтобы получить три проекции точки А, следует из нее опустить перпендикуляры на плоскости проекций. Точки пересечения перпендикуляров с плоскостью Vфронтальная проекция точки Av, с плоскостью Нгоризонтальная проекция точки Ан, с плоскостью Wпрофильная проекция точки Аw.

Для перехода к плоскому чертежу, эпюру (от французского слова epure – чертеж, проект) нужно плоскость Н повернуть вниз вокруг оси Х до совмещения с плоскостью V, а плоскость W совместить с плоскостью V, поворачивая ее вокруг оси Z вправо (Рис.2.2а).

Две ортогональные проекции на взаимно перпендикулярные плоскости лежат на прямых, перпендикулярных к соответствующей оси проекции и пересекают эту ось в одной и той же точке. Эти линии называются линиями связи.

Расстояние от точки до плоскостей проекций называются координатами этой точки и могут быть измерены по осям.

1) Расстояние ААw (ХА) от профильной плоскости проекций является абсциссой точки А;

2) Расстояние ААv () точки А от фронтальной плоскости проекций называется ординатой (на рис.2.1 размер оси Y уменьшен в два раза, т.к. во фронтальной диметрии показатель искажения равен 0,5);

3) Расстояние ААн () точки А от горизонтальной плоскости проекций называется аппликатой точки А.

Точка может быть задана ее координатами X, Y, Z, например,

А (, , )

Чертеж, на котором точка или система точек изображаются при совмещенном положении плоскостей проекций называется эпюром или чертежом.

Границы плоскостей проекций на эпюре обычно не показываются. Во многих случаях бывает достаточно двух плоскостей проекций, в этом случае проводится только одна ось проекции Х (Рис.2.2б).

 

Безосный эпюр

Изображения (проекции) точки, линии, плоской фигуры или пространственной формы на плоскостях проекций не изменятся, если плоскости перемещать по отношению к проецируемому объекту параллельно самим себе. При этом расстояния проецируемого объекта от плоскостей проекций изменяются, но это обстоятельство не имеет никакого значения для решения многих задач. Так, на технических чертежах оси проекций обычно не показывают. Поэтому на эпюре в ряде случаев можно не изображать осей проекций. Пример безосного чертежа точки приведен на рис.2.2в.

Рис. 2.2. Чертёж (эпюр) точки: а) на три плоскости проекции;

б) на две плоскости проекции; в) безосный



Поделиться:


Последнее изменение этой страницы: 2016-12-16; просмотров: 340; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.15.112 (0.009 с.)