Интерференция света в тонких плёнках 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интерференция света в тонких плёнках



Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол отражения, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источниковволн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, отчего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где — длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.

Лучи соседних участков спектра по обе стороны от нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску. В приближениигеометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей

— условие максимума;

— условие минимума,

где k=0,1,2... и — оптическая длина пути первого и второго луча, соответственно.


Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, вцветах побежалости, и т. д.

Как вариант:

В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри и т.д.) возникающее в р-тате интерференции света, отраженного двумя поверхностями пленки. Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (для простоты рассм. один луч).

На поверхности пленки в точке О луч

разделится на два: частично отразится от верхней поверхности пленки, и частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0=1), и частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы и дадут интерференционную картину, которая определится оптической разностью хода между интерферирующими лучами. Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ: где показатель преломления окружающей среды принят равным 1, а обусловлен потерей полуволны при отражении света от границы раздела. Если n>n0 (n<n0), то потеря полуволны произойдет в точке О (C) и будет иметь знак минус (плюс).

 

 

Кольца Ньютона.

Кольца Ньютона. Являются классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны.

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падении света имеющие вид концентрических окружностей. В отраженном свете оптическая разность хода (с учетом потери половины при отражении), при условии что n=1, а I=0, где d — ширина зазора. r — радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая d=r2/2R. Следовательно,.

Приравняв, к условиям максимума и минимума получим выражения для радиуса m-го светлого и темного колец: Измеряя радиусы соответствующих колец можно (зная радиус кривизны линзы) определить и наоборот, найти радиус кривизны линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны. Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были приведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на /2. т.е. максимумам интерференции в отраженном свете соответствует минимумы в проходящем, и наоборот.

 

Как вариант:

 

Другим методом получения устойчивой интерференционной картины для света служит использование воздушных прослоек, основанное на одинаковой разности хода двух частей волны: одной — сразу отраженной от внутренней поверхности линзы и другой — прошедшей воздушную прослойку под ней и лишь затем отразившейся. Её можно получить, если положить плосковыпуклуюлинзу на стеклянную пластину выпуклостью вниз. При освещении линзы сверху монохроматическим светом образуется тёмное пятно в месте достаточно плотного соприкосновения линзы и пластинки, окружённое чередующимися тёмными и светлыми концентрическими кольцами разной интенсивности. Тёмные кольца соответствуют интерференционным минимумам, а светлые — максимумам, одновременно тёмные и светлые кольца являются изолиниями равной толщины воздушной прослойки. Измерив радиус светлого или тёмного кольца и определив его порядковый номер от центра, можно определить длину волны монохроматического света. Чем круче поверхность линзы, особенно ближе к краям, тем меньше расстояние между соседними светлыми или тёмными кольцами

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 759; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.131.178 (0.005 с.)