Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Многолучевая интерференция. Коэффициент отражения. Формулы Эйри.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Ø Многолучевая интерференция Многолучевая интерференция – участие в интерференции более 2 когерентных лучей. В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность. Коэффициент отражения - отвлеченное число, показывающее отношение светового потока, отраженного телом, к световому потоку, падающему на него: ρ=F/F 0. Так как в природе не существует таких тел, которые полностью отражали бы весь падающий на них световой поток, и все тела в той или иной мере поглощают свет, коэффициент отражения всегда меньше единицы. Коэффициенты отражения: · Правильного (зеркального) отражения · коэффициент диффузного отражения · общий коэффициент отражения. Коэффициент отражения R от полированной стеклянной поверхности зависит от показателя преломления стекла и от угла падения луча. Рис. Зависимость коэффициента отражения от угла падения луча на поверхность раздела воздух - стекло для углов до 45-50°, т. е. в пределах того, что имеет место в обычных объективах, коэффициент отражения остается практически постоянным и, следовательно, зависит только от показателя преломления стекла. Значение R может быть вычислено по формуле: где n - показатель преломления стекла. Коэффициент отражения растет с увеличением показателя преломления. Этим объясняются большие потери света, имеющие место в сложных объективах, изготовленных из тяжелых сортов оптического стекла, если их поверхности не просветлены. Формулы Эйри. · Формула для прошедшей волны Предположим, что на пластинку падает под углом плоская монохроматическая волна с амплитудой E 0. При нахождении комплексной амплитуды суммарной волны, прошедшей через пластинку, нужно учесть, что фаза каждой последующей волны больше фазы предыдущей на
Мы считаем здесь размеры пластинки и линзы достаточно большими, чтобы можно было не учитывать дифракцию на их краях и виньетирование наклонных пучков (т.е ограничение их поперечного сечения краями пластинки и линзы). Для нахождения интенсивности прошедшей волны умножим E 2 в формуле на комплексно-сопряженную величину и воспользуемся формулами для энергетического коэффициента отражения: Таким же способом легко получить выражения для амплитуды и интенсивности отраженной волны.
· Формула для отраженной волны Тем же способом, каким мы получили выражение для амплитуды прошедшей волны, легко получить выражение для амплитуды отраженной волны: Здесь учтено, что . Для интенсивности отраженной волны находим
· Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. · Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. · Метод зон Френеля (строим волновую поверхность, на ней отмечаем границы зон - они удалены от точки экрана на полуцелое число длин волн. Если таких зон четное число, в точке экрана освещенность 0, если нечетное - освещенность положительная). · Зонная пластинка — плоскопараллельная стеклянная пластинка с выгравированными концентрическими окружностями, радиус которых совпадает с радиусами зон Френеля. Зонная пластинка «выключает» чётные либо нечётные зоны Френеля, чем исключает взаимную интерференцию (погашение) от соседних зон, что приводит к увеличению освещённости точки наблюдения. Таким образом зонная пластинка действует как собирающая линза.
· Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия. Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами,
где, знак плюс соответствует нечетным m, минус - четным m.
Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю. Если отверстие открывает одну зону Френеля, то в точке В амплитуда А =А1, т.е.вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре раза. Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если т нечетное - то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины. Расчет амплитуды результирующего колебания на вне осевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены. Число зон Френеля, открываемых отверстием, зависит от его диаметра. Если он большой, то Am ≪ A1и результирующая амплитуда A = A1/2,т. е. такая же, как и при полностью открытом волновом фронте. Никакой дифракционной картины не наблюдается, свет распространяется, как и в отсутствие круглого отверстия, прямолинейно. · Теорема Бабине (в теории дифракции) – теорема, согласно которой Фраунгоферовы дифракционной картины от каждого из дополнительных экранов, получаемые в фокальной плоскости линзы, одинаковы для любой точки, за исключением самого фокуса.
Источник: http://page-book.ru/i320312 Детлаф А.А. Яворский Б.М. Курс физики. Том III Волновые процессы. Оптика. Атомная и ядерная физика (стр. 188-191)
|
|||||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 2042; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.177.146 (0.01 с.) |