Закон термического равновесия 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Закон термического равновесия



Для одноатомных газов кинетическая энергия есть энергия поступательного движения. Из классической механики известно, что энергия поступательного движения частицы определяется её скоростью и массой.

, (4.1)

где m – усредненная масса и u – средняя скорость движения атомов.

Из статистической физики следует, что средняя кинетическая энергия частицы, обладающей только поступательным движением, прямо пропорциональна свойству системы – температуре Т.

, (4.2)

где k – постоянная Больцмана; T – абсолютная температура.

Совместное решение уравнений (4.1) и (4.2) приводит к выражению абсолютной температуры как величины, прямо пропорциональной средней кинетической энергии микрочастиц системы

. (4.3)

Для таких объектов, как атомы, например атомы инертных (благородных) газов, температура определяется энергией поступательного движения. В случае многоатомных молекул кинетическая энергия включает энергию различных видов движения. Представим модель трехатомной молекулы в виде шариков, связанных пружинками. Для такой молекулы характерна энергия поступательного, колебательного движения атомов в молекуле, а также вращательного и деформационного движения (рис. 33).

Е кин. = Е пост. + Е колеб. + Е вращ. + Е деформ.

 

Рис. 33. Формы движения трехатомной молекулы

 

Для системы, состоящей из громадного числа микрочастиц разной массы и совершающих разнообразные движения, а не только поступательное движение, температура системы является отражением всех форм движения частиц и абсолютная температура системы Т определяется средней кинетической энергией микрочастиц.

Рассмотрим построение термометрической шкалы на примере расширения – сжатия газа. Для идеального газа характерны два свойства: 1) объем молекул газа, много меньше объема, занятого всем газом; 2) радиус взаимодействия двух молекул значительно меньше среднего расстояния между ними.

Идеальных газов как таковых не существует, но можно взять инертный газ или молекулярный азот. Они с успехом выполняют функцию идеального газа.

Заполним газом сосуд постоянного объема (V = const). Измерим давление газа (р 2) в сосуде при температуре кипящей воды (Т 2) и давление газа (р 1) при температуре таящего льда (Т 1). При постоянном атмосферном давлении

(р = 1 атм) эксперимент всегда дает одно и то же отношение давлений газа в кипящей воде и плавящемся льду:

.

Сделаем первое допущение, примем, что отношение давлений прямо пропорционально отношению температур

,

тогда . (4.4)

Введем второе допущение, примем, что разность температур Т 1 и Т 2 равна 100

Т 2Т 1 = 100. (4.5)

Совместное решение уравнений (4.4) и (4.5) позволяет установить численное значение температуры кипения воды и плавления льда по так называемой абсолютной шкале температур. Температура кипения воды Т 2 = 373.15 К, а температура плавления льда Т 1 = 273.15 К. Абсолютная шкала температур всегда положительна. Она введена английским физиком У. Томсоном (лордом Кельвином).

Закон термического равновесия утверждает, что две системы, находящиеся в термическом равновесии с третьей системой, состоят в термическом равновесии друг с другом (рис. 34).

 

 
 

 


Рис. 34. Термическое равновесие между телами. Если Т 1 = Т 3 и Т 2 = Т 3, то Т 1 = Т 2

 

Первый закон термодинамики

Любая система обладает энергией. Энергияесть качественная и количественная характеристика движения и взаимодействия объектов материального мира.

Твердые тела, жидкости и газы проявляют разнообразные свойства, зависящие от природы атомов и молекул, составляющих эти тела. Они способны обмениваться энергией с окружающей средой, изменять агрегатное состояние в результате фазовых переходов или химический состав в результате реакций, проявлять (или не проявлять) ионную и электронную проводимость, разную степень теплопроводности, теплоемкости и бесчисленное число других физико-химических свойств. Процесс изменения физико-химического состояния вещества подчиняется фундаментальному закону сохранения энергии: энергия не возникает из ничего и не исчезает бесследно; она лишь превращается из одних видов в другие в строго эквивалентных количествах. Закон есть результат многовековых наблюдений, подтверждается экспериментальными данными и не имеет исключений.

Первый закон термодинамики есть частный случай закона сохранения энергии. Он применим к тепловым процессам, в которых обмен системы энергией с окружающей средой осуществляется в форме теплоты Q и работы А.

Рассмотрим систему, представляющую собой идеальный газ в цилиндре под поршнем (рис. 35). Внешним источником энергии для такой системы выступает нагреватель. Пусть нагреватель передает идеальному газу некоторое количество энергии в форме теплоты Q [Дж]. В результате такого воздействия увеличивается внутренняя энергия системы D U (поднимается температура газа) и совершается работа А перемещения груза на некоторую высоту. В соответствии с законом сохранения энергии получаем:

Q = D U + А (4.6)

Уравнение (4.6) является аналитическим выражением первого закона термодинамики: энергия, полученная (отданная) системой в форме теплоты, равна алгебраической сумме изменения её внутренней энергии и совершенной ею (над ней) работы.

Рис. 35. Изменение энергетического состояния системы (газ в цилиндре под поршнем) при нагревании

 

Формулировка первого закона указывает, что движение энергии возможно в любых направлениях и к системе, и от неё. На рис. 36 демонстрируются принятые в термодинамике знаки для работы, теплоты и внутренней энергии.

 

Пример. При сгорании 10 л бензина в автомобильном двигателе выделилось энергии в форме теплоты Q (горение) = 460×103 кДж. На нагревание окружающей среды (раскаленные выхлопные газы) затрачено энергии в форме теплоты Q (окр. среда) = 345×103 кДж. Часть энергии сгоревшего бензина израсходована на увеличение внутренней энергии D U = 10×103 кДж (нагревание двигателя). Вычислить количество бензина, израсходованное на движение автомобиля. И определить коэффициент полезного действия машины, работающей на бензине.

 

Решение

Согласно первому закону термодинамики

Q = D U + А

460×103 + (-345×103)= 10×103 + А

А = 105×103 кДж.

Коэффициент полезного действия h равен:

h .

Из 10 л бензина на движение автомобиля расходуется V = 10×0,228 = 2.28 л, а 7.72 л израсходованы на нагревание окружающей среды, включая нагревание двигателя, который при остывании также нагревает воздух.

 

В термодинамике принята следующая система знаков для оценки направления процессов обмена энергией системы с окружающей средой (рис. 36).

 
 

 


Рис. 36. Модель возможных маршрутов обмена энергией системы с окружающей средой в форме теплоты и работы

 

Эндотермический [ др.-греч endon внутри, qermh тепло] процесс – есть процесс, происходящий с поглощением системой энергии в форме теплоты (Q) из окружающей среды. Численное значение (Q) берется со знаком плюс, например, (Q) = + 100 кДж.

Экзотермический [др.-греч. exw снаружи, вне] процесс – есть процесс, происходящий с выделением системой энергии в форме теплоты (Q) в окружающую среду. Численное значение берется со знаком минус, например,

(Q) = - 100 кДж.

Для работы знаки выбираются иначе. Если система совершает работу, она считается положительной. Например, автомобиль (система) везет пассажиров. Но если приходится пассажирам толкать машину, у которой заглох двигатель, то эта работа считается отрицательной.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 227; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.251.22 (0.013 с.)