Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электроотрицательность атомов, по ПолингуСодержание книги
Поиск на нашем сайте
Неполярная ковалентная связь D(ЭО) = 0, i = 0 Полярная ковалентная связь 0 < D(ЭО) < 2, i = D(ЭО)/2 Ионная связь D(ЭО) > 2, i = 1 Для LiF значение D(ЭО) = 4 – 1 = 3 свидетельствует о ионном характере связи этого соединения. Ионная связь в кристаллах солей, оксидов, оснований не обладает свойством насыщаемости и направленности. Силы электростатического притяжения (при практически полном отсутствии перекрывания атомных орбиталей) удерживают ионы на расстоянии (lсв), соединяющем центры ионов. Ионные пары в кристалле выстраиваются в определенной последовательности, представленной на рис. 15. Изображена только одна грань объемного ионного кристалла кубической формы. Размеры такого кристалла ничем не ограничены. Цвет и форма ионных кристаллов зависит от их состава и от природы химических элементов (рис. 16). Разнообразие кристаллических структур ионных (не только ионных, как мы увидим далее) соединений позволяет использовать их свойства (цвет, твердость, прозрачность) в практических целях: для изготовления лазерных устройств, в виде украшений и многих других интересных и нужных вещей.
Рис. 15. Модель одной из граней ионного кристалла кубической формы
Рис. 16. Ионные кристаллы: а) фторид лития LiF; б) рубин Al2O3(примесь Cr2O3); в) гранат Ca3Cr2[SiO4]3; г) корунд Al2O3
Поверхность ионной кристаллической решетки доступна для её наращивания, и увеличение объема кристалла не имеет ограничений. Например, кристаллы рубина получают в промышленности следующим образом. Порошок гидроксида алюминияAl(OH)3 в смеси с незначительной добавкой оксида хрома (III) Cr2O3 медленно, крупинка за крупинкой, ссыпается сквозь жерло электропечи, нагретой до температуры плавления гидроксида алюминия. В расплавленной капле гидроксид алюминия превращается в оксид алюминия Al2O3 и воду. Вода испаряется, а оксид алюминия вместе с оксидом хрома кристаллизуются на подложке в форме темно-красного «пальца». Это и есть синтетический рубин.
2.5. Металлическая связь Кристалл металла (например, железа, меди, алюминия и т.д.) содержит в узлах кристаллической решетки положительно заряженные ионы, а валентные электроны, осуществляющие химическую связь, принадлежат не определенным атомам, а всему кристаллу металла в целом (рис. 17).
Рис. 17. Модель металлической кристаллической решетки; черными точками обозначены электроны
Электроны свободно перемещаются в объеме кристалла. За подвижность их называют «электронным газом». «Электронный газ» прочно удерживает положительно заряженные ионы в узлах кристаллической решетки. Металлическая связь обусловлена электромагнитным взаимодействием, удерживающим положительно заряженные ионы в узлах кристаллической решетки подвижными электронами («электронным газом»). Металлическая связь характерна для металлов и сплавов. Длина металлической связи – это расстояние между узлами металлической кристаллической решетки, в которых расположены положительно заряженные ионы.
2.6. Квантовые правила образования химических Связей Для характеристики трех типов химических связей – ковалентной, ионной и металлической используются методы валентных связей (ВС) и молекулярных орбиталей (МО). На заре использования квантовой механики в химии (В. Гейтлер и Ф. Лондон, 1927 г.) было доказано, что волновое уравнение (его называют уравнением Шредингера) справедливо для описания как свойств атомов, так и молекул. В молекулах, ионных соединениях и металлах действуют электрические силы притяжения и отталкивания, которые взаимно уравновешены и обеспечивают их устойчивость. Теоретические расчеты квантовой механики позволили сформулировать следующие положения метода валентных связей:
В методе, предложенном Гейтлером и Лондоном, образование химической связи рассматривается как результат перекрывания атомных орбиталей (АО), заселенных электронами с противоположными спинами. Но это не единственный подход к объяснению химической связи. Существует метод молекулярных орбиталей (МО). Он основан на допущении, что электроны, участвующие в образовании химической связи, образуют молекулярные орбитали, как в атоме атомные орбитали. Принцип запрета Паули, правило Гунда, принцип наименьшей энергии (правило Клечковского) справедливы и для молекулярных орбиталей. Основы метода МО разработаны Р. Малликеном и Ф. Гундом в 1928-1930 гг. и сводятся к следующим положениям: 1. молекула - это единая система ядер и электронов, а не совокупность атомов, сохраняющих некоторую индивидуальность; 2. электроны в молекулах располагаются на молекулярных орбиталях (МО); 3. число образовавшихся связывающих и разрыхляющих МО равно числу АО исходных атомов; 4. устойчивость молекулы определяется разностью числа электронов на связывающих и разрыхляющих орбиталях. Эта разность выражает порядок связи. Для описания электронного состояния молекулы в методе МО используются энергетические диаграммы, аналогичные диаграммам энергетических уровней в атомах. Если в поле ядер двухатомной молекулы, например молекулы водорода, электроны движутся так, что «мешают» друг другу (отталкиваются), образуется разрыхляющая молекулярная орбиталь. Разрыхляющая орбиталь препятствует образованию химической связи и располагается на более высоком энергетическом уровне по сравнению с энергетическими уровнями атомных орбиталей. Если два электрона движутся в поле ядер так, что они «помогают» друг другу удерживать ядра на расстоянии длины химической связи, образуется связывающая молекулярная орбиталь. Она обеспечивает образование химической связи, располагаясь на более низком энергетическом уровне по сравнению с энергетическими уровнями атомных орбиталей. Продемонстрируем применение метода МО на примере двухатомных молекул. В молекуле Н2 атомы Н теряют свою индивидуальность. Два электрона, расположенные на атомных орбиталях, заполняют лишь связывающую s1 s молекулярную орбиталь, разрыхляющая s*1 s молекулярная орбиталь остается незаполненной (рис. 18).
Рис. 18. Энергетическая диаграмма молекулы водорода: s1 s -связывающая молекулярная орбиталь, s*1 s -разрыхляющая молекулярная орбиталь
Последовательность заполнения s1 s и s*1s молекулярных орбиталей электронами происходит в соответствии с квантовыми правилами: от низших к высшим энергетическим уровням при соблюдении принципа запрета Паули и правила Гунда. Устойчивость молекулярного образования оценивается по значению порядка связи. Порядок связи (W) - это число, равное разности между количеством электронов на связывающих и разрыхляющих орбиталях, поделенное на 2. В молекуле водорода порядок связи равен 1. Чем больше порядок связи, тем устойчивее молекула. Если порядок связи равен нулю, это означает, что химическое связывание атомов невозможно. Молекула Не2 не существует. Порядок связи в такой молекуле равен 0 (рис. 19).
Рис. 19. Энергетическая диаграмма, подтверждающая, что гипотетическая двухатомная молекула гелия Не2 не существует
В молекуле кислорода порядок связи равен 2. . Рис. 20 свидетельствует о более высокой прочности химического связывания атомов в молекуле кислорода по сравнению с молекулой водорода.
Рис. 20 Энергетическая диаграмма молекулы кислорода; разрыхляющие молекулярные орбитали помечены звездочкой
Краткий итог темы 1. Существует три типа химических связей между атомами: ковалентная, ионная и металлическая. 2. Химические связи в молекулах, ионных и металлических соединениях имеют электрическую природу. Силы притяжения удерживают атомы, ионы на расстояниях, соответствующих длине химической связи. 3. Длина связи в молекулах есть расстояние между ядрами ковалентно связанных атомов. В ионных соединениях длина связи соответствует расстоянию между центрами ионов. В металлах длина связи соответствует расстоянию между узлами кристаллической решетки металла. 4. С позиций метода валентных связей (ВС) ковалентная связь между атомами в молекуле осуществляется парой электронов при перекрывании атомных орбиталей. 5. С позиций метода молекулярных орбиталей (МО) молекула представляет собой многоядерный «атом», в котором существуют молекулярные орбитали. Движение электронов на молекулярных орбиталях подчиняется законам и правилам квантовой механики. 6. Ионная связь существует между катионами и анионами в ионных кристаллах. 7. Металлическая связь осуществляется подвижными электронами, удерживающими положительно заряженные ионы в узлах кристаллической решетки металла.
Термины для запоминания Все навыки мышления неразрывно связаны со способностью запоминать информацию. Если возникают трудности в понимании сущности понятий и определений, следует прочитать еще раз раздел, в котором они обсуждаются и произнести вслух или написать определения, понятия и кратко изложить в нескольких фразах главную идею темы. Через несколько дней следует, не заглядывая в учебник, воспроизвести то, что необходимо запомнить. Акцептор электронов располагает атомом, одна из орбиталей которого вакантна, т.е. не содержит электронов. Гибридизация представляет собой способ описания перестройки атомных орбиталей в молекуле по сравнению со свободным атомом. Длина ионной связи соответствует расстоянию между центрами ионов. Длина ковалентной связи – это расстояние между ядрами ковалентно связанных атомов молекулы. Длина металлической связи – это расстояние между узлами металлической кристаллической решетки, в которых расположены положительно заряженные ионы. Донор электронов располагает атомом, одна из орбиталей которого содержит свободную пару электронов. Донорно-акцепторная ковалентная связь – связь между атомами, образующаяся при участии пары электронов электронодонора и вакантной орбитали электроноакцептора. Ионная связь обусловлена взаимодействием противоположно заряженных сферических ионов, удерживающая их на расстоянии длины химической связи. Ковалентная s-связь – связь между атомами, образующаяся при перекрывании атомных орбиталей вдоль линии, проходящей через ядра атомов. Ковалентная связь обусловлена электромагнитным взаимодействием, удерживающим положительно заряженные ядра отрицательным зарядом, сосредоточенным в области перекрывания атомных орбиталей. Металлическая связь обусловлена электромагнитным взаимодействием, удерживающим положительно заряженные ионы в узлах кристаллической решетки подвижными электронами («электронным газом»). Молекула – микросистема, состоящая из двух или большего числа ядер и электронов, движущихся в поле ядер, и содержащая ковалентные связи. Порядок связи (W) в методе МО – есть число, равное разности между количеством электронов на связывающих и разрыхляющих орбиталях, поделенной на 2. p -Связь – связь между атомами осуществляется так, что образуются две области перекрывания р-орбиталей по обе стороны от оси s-связи. Химическая связь обусловлена электромагнитным взаимодействием, удерживающим систему ядер и электронов в молекулах или кристаллах. Электроотрицательность – параметр, характеризующий способность атома притягивать к себе электрон.
Вопросы для проверки знаний 1. Что подразумевается под молекулой? 2. В чем различие и сходство между ковалентной и ионной связью? 3. В чем разница между s и p ковалентными связями? 4. Что, на ваш взгляд, явилось причиной введения представления о гибридизации атомных орбиталей? 5. Какой физический смысл вкладывается в понятия «направленность» и «насыщаемость» ковалентных связей? 6. В чем различие и сходство между ионной и металлической связями? 7. Согласны ли вы с утверждением, что «химическая связь обусловлена электрическими силами притяжения и отталкивания»? 8. В чем сильные и слабые стороны методов валентной связи и молекулярных орбиталей? 9. Что подразумевается под структурной и молекулярной формулами? 10. В чем различие и сходство между ковалентной полярной и неполярной связями? 11. Можно ли назвать ионное соединение LiF молекулой? 12. Какой механизм образования ковалентной связи называется донорно-акцепторным? 13. Какая связь называется металлической?
Упражнения 1. Химическая связь в молекуле изменяет свою длину в результате колебательного движения атомов. Согласуется ли этот факт с тем, что в справочниках дается единственное значение длины химической связи? 2. Можно ли утверждать, что кристалл хлорида натрия состоит из молекул NaCl? 3. С позиций метода ВС О2 не имеет неспаренных электронов. Докажите, что с позиций метода МО О2 имеет два неспаренных электрона. 4. Постройте энергетические диаграммы молекул N2, F2 и определите порядок связей. 5. Докажите, существует ли ион с позиций: а) метода ВС; б) метода МО? ТЕМА 3
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 357; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.152.102 (0.009 с.) |