Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Простые и сложные движения точки и твердого тела в кинематике. Основные параметры и уравнения движения.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Кинематика – это раздел механики, в котором изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения. Механическим движением называется изменение взаимного расположения тел Материальной точкой называется такое тело, размерами и формой которого можно пренебречь в сравнении с размерами других тел или расстояниями до них в условиях данной задачи. В общем случае различные точки твердого тела совершают разные движения. Поэтому и возникает необходимость изучить в первую очередь движение отдельных точек тела. Чтобы определить положение точки в пространстве, нужно иметь какое-то неподвижное тело или связанную с ним систему координатных осей, которую называют системой отсчета. Движение заданного тела или точки обнаруживается только путем сравнения с системой отсчета. В природе не существует неподвижных тел и, следовательно, не может быть абсолютно неподвижных систем отсчета. Обычно условно неподвижной системой отсчета считают систему координатных осей, связанную с Землей. Рассмотрим для примера движение точки в какой-то условно неподвижной системе координат xyz. Положение точки М в пространстве определяется тремя координатами. Эти координаты изменяются при переходе точки в другое положение. Кривая, которую описывает точка при движении в пространстве относительно выбранной системы отсчета, называется ее траекторией. Траектории делятся на прямолинейные (например, движение точек поршня двигателя) и криволинейные (круговые — движение точек шкива, круглой пилы; параболические — движение жидкости при истечении из отверстия в боковой стенке сосуда и др.). Движение точки в пространстве прежде всего определяется скоростью, которая характеризует быстроту и направление движения точки в данный момент времени. В зависимости от скорости движение точки может быть равномерным и неравномерным. При равномерном движении скорость постоянна по величине, при неравномерном — переменна. Изменение скорости во времени характеризуется ускорением. Скорость и ускорение точки являются векторными величинами. При изучении движения точки необходимо различать два важных понятия: пройденный путь (или перемещение) и расстояние. Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении. Уравнения, определяющие положение движущейся точки в зависимости от времени, называются уравнениями движения. Наиболее удобный способ задания движения точки — естественный способ. При этом задается траектория точки (графически или аналитически) и закон движения точки по траектории. Пусть произвольная точка А перемещается по заданной траектории. Принимая точку 0 за начало отсчета, уравнение движения можно представить в виде: s = f (t), где s — расстояние точки А от начала отсчета; t — время. Положение движущейся в плоскости точки (рис.б) можно определить, если известны ее координаты х и у относительно системы двух взаимно перпендикулярных координатных осей Ох и Оу. При движении точки ее координаты изменяются с течением времени, следовательно, x и у являются некоторыми функциями времени и определяют движение точки: Такой способ задания движения точки называется координатным. С помощью уравнений движения можно найти траекторию точки. Для этого из них нужно исключить параметр — время t — и найти зависимость между координатами точки у = f (х). Рассмотрим некоторые основные определения, важные для последующего изложения. Если точка за равные промежутки времени проходит равные отрезки пути, то ее движение называется равномерным. Скорость равномерного движения v измеряется отношением пути s, пройденного точкой за некоторый промежуток времени, к величине этого промежутка времени Если известны проекции скорости на оси координат, можно определить ее значение и направление: Изменение скорости в единицу времени определяется ускорением. Найденное ускорение характеризует изменение численного значения скорости и ее направления. Для удобства ускорение раскладывают на взаимно перпендикулярные составляющие по касательной и нормали к траектории движения
|
||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 490; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.132.15 (0.01 с.) |