Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методика оценки случайных погрешностей прямых

Поиск

Равноточных измерений

Измерения называются равноточными, если они проведены одинаковыми по точности методами, или одним и тем же методом в одинаковых условиях. В результате n измерений некоторой физической величины x, истинное значение которой X0 = mx (если нет систематических погрешностей) неизвестно, из-за наличия случайных погрешностей получается ряд численных значений x1; x2, …, xn, которые в общем случае отличаются друг от друга и от X0.

При обработке результатов этих измерений возникают две задачи:

1. Нахождение по результатам отдельных измерений наилучшей оценки истинного значения, т.е. значения, наиболее близкого к истинному;

2. Определение погрешности полученной оценки.

Для большого числа практических случаев, когда грубые погрешности (промахи) встречаются редко, а случайные погрешности распределены по нормальному закону, наилучшей оценкой измеряемой величины является среднее арифметическое отдельных результатов измерения:

. (7)

Отдельные результаты измерений являются случайными величинами, поскольку содержат случайные погрешности ∆Хi:

∆хi = хi - х0.

Среднее арифметическое также является случайной величиной, как функция случайных величин. Поэтому абсолютная погрешность среднего арифметического, равная:

(8)

также будет случайной.

Это говорит о том, что истинное значение абсолютной погрешности найти невозможно, можно лишь тем или иным способом приближенно оценить ее значение. Например, можно считать, что с определенной вероятностью значение абсолютной погрешности по абсолютной величине будет меньше некоторой заданной величины , т.е.

. (9)

Отсюда следует, что истинное значение измеряемой величины с вероятностью накрывается интервалом , т.е.

. (10)

Интервал называется доверительным, а вероятность - доверительной вероятностью. Очевидно, чем больше - ширина доверительного интервала, тем с большей вероятностью доверительный интервал заключает в себе Х0.

Таким образом, для характеристики случайной погрешности необходимо знать два числа, а именно – величину оценки абсолютной погрешности , которую часто называют просто абсолютной погрешностью, и величину доверительной вероятности.

В качестве ширины доверительного интервала можно взять - среднеквадратичную погрешность. Для отдельного измерения она равна:

. (11)

Среднее арифметическое имеет меньшее рассеивание и соответственно его среднеквадратичная погрешность будет меньше в раз.

. (12)

В физических, биологических, медицинских, физиологических и др. измерениях обычно пользуются значениями доверительной вероятности = 0,9; = 0,95; =0,99. При заданной доверительной вероятности ширину доверительного интервала (оценка погрешности) удобно находить в виде долей , т.е.:

, (13)

где - коэффициент, зависящий от величины доверительный вероятности и от объема выборки n. При находится по таблице Стьюдента, при n> 30 он очень мало отличается от таблицы нормального распределения и в этом случае может быть найден по той же таблице при n= ∞.

Если взять величину абсолютной погрешности , то вероятность того, что доверительный интервал содержит Х0 будет равна = 0,997. Это очень большая вероятность и поэтому говорят, что с практической уверенностью можно утверждать, что отклонение от Х0 больше чем на невозможно. Это правило известно под названием “правила трех сигм”.

Наряду со среднеквадратичной погрешностью для оценки случайной погрешности пользуются и среднеарифметической погрешностью r, вычисленной по формуле:

. (14)

Все приведенные выше результаты теории случайных погрешностей применимы для характеристики точности измерения лишь в случае, если измерение многократно повторено.

Последовательность действий при оценке истинного значения измеряемой величины и оценки случайной погрешности следующая:

1. находится среднее арифметическое по результатам измерений:

, (15)

2. находится среднеквадратическая погрешность отдельного результата измерения:

, (16)

3. находится максимальная абсолютная погрешность отдельного измерения:

, (17)

4. проверяется, все ли результаты измерений укладываются в интервал , если да, то переходим к следующему пункту, если нет, то такое значение отбрасыватся (тем самым мы избавляемся от промахов) и вычисления следует начать сначала.

5. находится среднеквадратическая погрешность среднего арифметического:

(18)

6. находится из таблицы коэффициент по заданным и п и определяется оценка абсолютной погрешности:

(19)

7. записывается результат измерения:

 

(20)

при заданном . Это означает, что с заданной доверительной вероятностью доверительный интервал накрывает , т.е. .

8. если необходимо, то находится относительная погрешность, при этом, поскольку Х0 неизвестно, приближенно его заменяют на :

. (21)



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 482; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.124.52 (0.006 с.)