Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нуклеофильное присоединение синильной кислоты, бисульфита натрия, реактива Гриньяра, ацетиленидовСодержание книги
Поиск на нашем сайте
В карбонильном соединении атом углерода плоский, легко доступен для атаки нуклеофила сверху или снизу от этой плоскости (I). В переходном состоянии (II) нуклеофил, подавая электроны на атом углерода, начинает образовывать с ним s-связь, а кислород приобретает электроны, атом углерода становится близок к тетраэдрическому. Продукт реакции присоединения (III) - ион, в котором атом углерода находится в sр3 -гибридном состоянии - тетраэдр, на кислороде - целый отрицательный заряд. Именно способность кислорода нести отрицательный заряд обусловливает реакционную способность карбонильных соединений по отношению к нуклеофилам. Стабилизация полученного иона происходит за счет присоединения протона воды или кислоты (IV). Реакционная способность карбонильных соединений определяется пространственными и электронными факторами. Поскольку в переходном состоянии углерод карбонила начинает принимать тетраэдрическую конфигурацию, и атомы, связанные с ним, несколько сближаются, то чем больше группы R1 и R2, тем сильнее они препятствуют такому сближению. При увеличении объема заместителей, расположенных у атома углерода карбонила, реакционная способность уменьшается. В том же направлении действуют и электронные факторы. Алкильные группы проявляют электронодонорный индукционный эффект, дестабилизируют переходное состояние, увеличивая отрицательный заряд на атоме углерода, который подвергается атаке нуклеофила. Присоединение цианид-иона. Цианистый водород присоединяется ко многим альдегидам и кетонам, образуя циангидрины. Реакцию проводят, добавляя минеральную кислоту к смеси карбонильного соединения и цианистого натрия, количество добавляемой кислоты должно быть недостаточным для связывания всех цианид-ионов. Эти реакции имеют практическое применение для получения a-оксикислот, цианалкенов и непредельных кислот. Присоединение бисульфита. Бисульфит натрия присоединяется к большинству альдегидов и метилкетонов. Эту реакцию используют для очистки карбонильных соединений: полученный кристаллический продукт отделяют от некарбонильных примесей и добавлением кислоты или основания регенерируют карбонильное соединение. Присоединение реактива Гриньяра. Реактивы Гриньяра присоединяются к альдегидам и кетонам быстро и необратимо.
Органический остаток, переносимый с парой электронов на углерод карбонильной группы, является сильным нуклеофилом. Другая молекула действует как кислота Льюиса, облегчает присоединение нуклеофила СН3y. Присоединение ацетиленидов. Альдегиды и кетоны реагируют с ацетиленидом натрия, образуя алкоксиды натрия, гидролиз которых приводит к образованию спиртов, содержащих тройную связь. 5.2.2. Нуклеофильное присоединение - отщепление G–NH2 и спиртов C альдегидами и кетонами взаимодействуют соединения, родственныеаммиаку и спирты в этом случае реакция протекает как нуклеофильное присоединение с последующим отщеплением воды. Примеры нуклеофильных реагентов и продуктов взаимодействия приведены ниже. Поскольку нуклеофил слабый (частица, не имеющая заряда), его присоединение катализируется кислотой. Предварительное протонирование карбонильного соединения делает его более реакционноспособным: на карбонильном углероде увеличивается положительный заряд (I), что позволяет кислороду приобрести пару электронов в результате нуклеофильной атаки, не получая при этом отрицательного заряда (II). Продукты присоединения (IV) содержат группу с двойной связью , образующуюся в результате элиминирования молекулы воды из первоначального аддукта (II). Следует учесть, что производные аммиака и спирты являются основаниями и взаимодействуют с кислотами, теряя приэтом способность реагировать как нуклеофилы. Кислотность среды, при которой присоединение будет протекать легче всего, определяется основностью реагента и реакционной способностью карбонильного соединения: раствор должен быть настолько слабокислым, чтобы значительное количество реагента оставалось не протонированным, и настолько сильнокислым, чтобы сделать достаточно реакционноспособным карбонильное соединение. Взаимодействие с гидроксиламином. Перегруппировка Бекмана. Продуктом взаимодействия альдегида или кетона с гидроксиламином является оксим. Скорость образования оксима максимальна при рН ~ 4. Ранее оксимы применяли главным образом для идентификации альдегидов и кетонов. Однако они представляют интерес и для органического синтеза. Например, восстановлением оксимов могут быть получены первичные амины.
Оксимы при действии на них кислот превращаются в замещенные амиды кислот (перегруппировка Бекмана). Сначала происходит протонирование оксима (I) и отщепление воды. Синхронно с отщеплением воды к атому азота из анти-положения мигрирует радикал R1. Карбокатион (II) захватывает молекулу воды с образованием оксоний-иона (III). Промежуточное соединение с гидроксилом у углерода при двойной связи (IV) перегруппировывается в амид (V). Бекмановская перегруппировка имеет промышленное значение при получении капролактама, используемого для получения высокомолекулярного поликапроамида – капрона (см. п. 10.2). Взаимодействие со спиртами, образование ацеталей. Альдегид в безводном спирте, содержащем небольшое количество безводной кислоты, обычно хлористого водорода, превращается в ацеталь. Воду удаляют по мере ее образования в виде азеотропа с бензолом и этиловым спиртом (Ткип. = 64,9 оС). Присоединение одной молекулы спирта приводит к образованию полуацеталя. Полуацеталь представляет собой спирт и простой эфир одновременно, в присутствии кислот полуацеталь как спирт реагирует со второй молекулой спирта. Ацетали – простые эфиры и как простые эфиры устойчивы по отношению к основаниям, но в отличие от них расщепляются кислотами значительно легче. Это объясняется тем, что на лимитирующей стадии обеих реакций – образование и расщепление ацеталей – образуется устойчивый карбониевый ион. Первичные ароматические амины взаимодействуют с ароматическими альдегидами с образованием оснований Шиффа. Эти реакции не требуют катализатора. Реакция ароматических альдегидов с ароматическими аминами используют для защиты аминогруппы, так как полученные соединения легко гидролизуются в кислой среде с образованием исходных альдегида и амина. Шиффовы основания, образовавшиеся при взаимодействии первичных ароматических аминов с алифатическими альдегидами, неустойчивы и легко полимеризуются.
|
||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 354; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.156.84 (0.009 с.) |