Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Восприятие интенсивности звука.Содержание книги
Поиск на нашем сайте
Предполагается, что сила звука кодируется путем раздражения внутреннего и наружного слоев рецепторных клеток кортиева органа. Наружные клетки имеют тонкие и длинные волоски и деформируются текториальной мембраной при более слабых звуках, чем внутренние фонорецепторы с толстыми и короткими волосками. Возможно, что в зависимости от интенсивности звукового раздражения имеется разное соотношение числа возбужденных внутренних и наружных фонорецепторов. 2. Функция гладких мышц (электрофизиологические явления, функциональные единицы, особенности распространения возбуждения), виды сокращений.
Гладкомышечные клетки (ГМК) в составе гладких мышц формируют мышечную стенку полых и трубчатых органов, контролируя их моторику и величину просвета. Регуляцию сократительной активности ГМК осуществляют двигательная вегетативная иннервация и множество гуморальных факторов. В ГМК отсутствуетпоперечнаяисчерченность, т.к. миофиламенты — тонкие (актиновые) и толстые (миозиновые) нити — не образуют характерных для поперечно-полосатой мышечной ткани миофибрилл. Заострёнными концами ГМК вклиниваются между соседними клетками и образуют мышечныепучки, в свою очередь формирующие слоигладкоймускулатуры. Встречаются и единичные ГМК (например, в субэндотелиальном слое сосудов). Сократительныйаппарат. Стабильные актиновые нити ориентированы преимущественно по продольной оси ГМК и прикрепляются к плотным тельцам. Сборку толстых (миозиновых) нитей и взаимодействие актиновых и миозиновых нитей активируют ионы Ca2+, поступающие из кальциевых депо — саркоплазматического ретикулума. Непременные компоненты сократительного аппарата — кальмодулин (Ca2+–связывающий белок), киназа и фосфатазалёгкойцепимиозина гладкомышечного типа. Особенности нервных влияний. Особенностью иннервации скелетной мускулатуры является наличие так называемых двигательных единиц. Двигательная единица (моторная единица) включает в себя один мотонейрон вместе с группой иннервируемых мышечных волокон (от10 до 2000). Мотонейроны составляют ядра или часть ядер ЧМН или расположены в передних рогах спинного мозга. 3) Функционирование моторных единиц. а) Из нейрона двигательной единицы к иннервируемым мышечным волокнам импульс приходит одновременно. б) Обычно разные нейроны, составляющие нервные центры, посылают импульсы на периферию не одновременно, и возникшая асинхронность работы моторных единиц обеспечивают слитный характер сокращения мышц. 4) Электрофизиологические явления. Потенциал покоя скелетных мышц равен 60 – 90мВ и обусловлен концентрационным градиентом, в основном ионов К+ стремящихся покинуть клетку. К – Na – зависимая АТФ-аза, используя энергию АТФ, обеспечивает постоянную закачку в клетку К+ и удаление Na+. Потенциалдействия мышечных волокон составляет 110 – 120 мВ, продолжительность его фаз 1 – 3 мс (в мышцах конечностей и туловища). Величина следовых потенциалов колеблется в пределах 15 мВ, продолжительность около 4 мс. Форма потенциала действия – пикообразная. 5) Биоэлектрические явления и функциональное состояние. Функциональное состояние мышц, критерием которого является возбудимость, изменяется: а) во время развития потенциала действия; б) при изменении поляризации мембраны. 2.2 Гладкая мускулатура. 1) Функции гладких мышц: а) регулируют величину просвета полых органов, бронхов, сосудов; б) перемещают содержимое с помощью волны сокращения и изменения тонуса сфинктеров. 2) Электрофизиологические явления. Потенциал покоя гладкомышечных волокон, не обладающих автоматией, равен 60 – 70 мВ, обладающих автоматией – колеблется от 30 до 70 мВ. Более низкая величина потенциала покоя по сравнению по сравнению с поперечно-полосатой мышцей объясняется тем, что мембрана гладкого мышечного волокна более проницаема для ионов натрия. Потенциал действия. При возбуждении в гладких мышцах могут генерироваться два вида потенциала действия: а) пикообразный; б) платообразный. Длительность пикообразных потенциалов действия 5–80 мс, платообразных – 90–500 мс. Ионный механизм потенциала действия гладких мышц отличается от таково у поперечно-полосатых. Деполяризация мембраны гладко-мышечного волокна связана с активизацией медленных злектровозбудимых кальциевых каналов, проницаемых для натрия. Кальциевые каналы являются медленными, т. е. имеют длительный латентный период активизации и инактивации. 3) Функциональные единицы. Функциональной единицей гладкомышечной ткани является пучок волокон диаметром не менее 100 мкм. Клетки пучка соединены плотными контактами или межклеточными мостиками. Данные обстоятельства приводят к тому, что деятельность участка гладкомышечной ткани складывается из активности функциональных единиц. 4) Особенности распространения возбуждения. Возбуждение распространяется двумя способами: а) путем локальных токов, как в нервном волокне и волокнах поперечно-полосатой мышцы; б) через некрусы на соседние мышечные волокна (как в сердечной мышце), поскольку в гладкой мышце существует функциональный синцитий. 5) Виды сократительной активности, связанные с функционированием каналов. Тонические сокращения. Проявляются в виде базального тонуса и его изменений. Наиболее выражено это в сфинктерах. Обеспечивается путем включения хемочувствительных каналов для ионов Са++, Na+. Ритмические (фазные) сокращения. Проявляются в виде периодической деятельности. Запуск фазного сокращения осуществляется потенциалом действия и включением быстрых потенциалзависимых Са++ и Na+ каналов с последующим включением медленных потенциалзависимых каналов. В условиях естественной активности обычно наблюдается сочетание тонического и фазного компонентов, связано это с включением вышесказанных трех видов каналов. Торможение активности мышц обусловлено снижением уровня ионизированного кальция в клетке. 6) Автоматия гладких мышц и ее регуляция. Для гладких мышц характерна автоматия или спонтанная активность, причина которой – ритмические колебания мембранного потенциала. Так в ЖКТ выделяют несколько участков, выполняющих функции водителя ритма – пейсмекеров (в желудке, в ДПК, подвздошной кишке). С пейсмекерной деятельностью гладких мышц сосудистой стенки связывают периодическое расширение и сужение просвета микрососудов. Функционирование пейсмекера. Спонтанная активность зависит от колебаний концентрации Са++ и цАМФ в миоцитах пейсмекера. Этапность событий: а) увеличение свободного кальция в миоците приводит к генерации потенциала действия; б) активируется аденилатциклаза и нарастает в клетке концентрация цАМФ и кальций связывается внутриклеточными депо или удаляется из клетки; Таким образом, концентрация цАМФ – это кальциевый осциллятор или ритмозадающий фактор, в итоге наблюдается тот или иной уровень тонического напряжения (сокращения) и медленные движения. В большинстве случаев, но не всегда это связывают с изменением активности метасимпатической нервной системы. Регулирующее влияние на пейсмекер заключается в регуляции скорости изменения концентрации цАМФ, а отсюда работа кальциевого механизма. 1) Это осуществляется за счет действия БАВ на метасимпатическую систему или непосредственно на пейсмекер клетки. 2) Влияния БАВ и активность метасимпатической системы дополняются и функционированием двух отделов АНС, максимум активности гладких мышц или снижение ее наблюдается при частоте приходящих импульсов до 12 в секунду: а) обычно парасимпатическая нервная система оказывает возбуждающий эффект на гладкие мышцы, но расслабляет гладкие мышцы сосудов; б) симпатическая нервная система обычно тормозит активность гладких мышц, но возбуждает гладкие мышцы сосудов; 3) Механизм сокращения и расслабления мышц (ввиду изученности вопроса разбирается на примере скелетных мышц).
3. Лимфообразование, движение лимфы. Функции лимфатической системы Лимфатическая система выполняет ту же функцию, что и венозная: возвращает к сердцу жидкость, но из межклеточных пространств. Лимфатическая система (ЛС) соединяет межклеточное пространство с кровеносной системой. ЛС начинается слепыми капиллярами с крупными межэндотелиальными щелями. Капилляры сливаясь, образуют все более крупные сосуды, имеющие гладкие мышцы и клапаны. Заканчиваются ЛС грудным и шейным протоками. Особая роль принадлежит лимфатическим узлам. Лимфа – образуется в результате всасывания тканевой жидкости в лимфатические капилляры. Причины образования лимфы. 1) Образование лимфы зависит от функционального состояния кровеносной системы, особенно венозной. Так, в результате сужения посткапиллярных вен капиллярное давление повышается (гидростатическое давление), способствуя увеличению фильтрации и образованию лимфы. 2) Образование лимфы зависит от площади функционирующих капилляров, т. е. от площади фильтрации. Например, при мышечной, особенно при ритмической работе, увеличивается микроциркуляторное русло, что ведет к повышению образования лимфы. 3) На образование лимфы влияет величина артериального давления. При его повышении фильтрация в МЦР растет и увеличивается лимфообразование. Движение лимфы. 1) Обеспечивается наличием фазных и тонических миоцитов в лимфангионах. Лимфоангион образован мышечной манжеткой и клапанным аппаратом. Его работа оценивается систолическим минутным объемом лимфы. Пейсмекер лимфангиона расположен в дистальном отделе. Возбуждается в ответ на изменение внутрисосудистого давления или действие химических веществ. Частота возбуждений 6 – 9 в минуту. Вызванные влияния могут быть возбуждающими и тормозными и приводят к изменению емкостной функции отделов лимфатической системы и минутного объема лимфооттока. 1) Движению лимфы помогают скелетные мышцы. 2) Приспосабливающее действие грудной клетки. Во время вдоха приток лимфы увеличивается.
|
||||
Последнее изменение этой страницы: 2016-09-17; просмотров: 310; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.161.245 (0.007 с.) |