Умножение матрицы на вектор при разделении данных по строкам 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Умножение матрицы на вектор при разделении данных по строкам

Поиск

Данный алгоритм основан на представлении матрицы непрерывными наборами (горизонтальными полосами) строк. Полученные полосы распределяются по процессорам вычислительной системы. Вектор b копируется на все процессоры. Перемножение полосы матрицы на вектор (а данная операция может быть выполнена процессорами параллельно) приводит к получению блока элементов результирующего вектора с. Для объединения результатов расчета и получения полного вектора c на каждом из процессоров вычислительной системы необходимо выполнить операцию обобщенного сбора данных.

Умножение матрицы на вектор при разделении данных по столбцам

Другой подход к параллельному умножению матрицы на вектор основан на разделении исходной матрицы на непрерывные наборы (вертикальные полосы) столбцов. Вектор b при таком подходе разделен на блоки. Вертикальные полосы исходной матрицы и блоки вектора распределены между процессорами вычислительной системы.

Параллельный алгоритм умножения матрицы на вектор начинается с того, что каждый процессор i выполняет умножение своей вертикальной полосы матрицы А на блок элементов вектора b, в итоге на каждом процессоре получается вектор промежуточных результатов c'(i). Далее для получения элементов результирующего вектора с процессоры должны обменяться своими промежуточными данными между собой.

Умножение матрицы на вектор при блочном разделении данных

 

Рассмотрим теперь параллельный алгоритм умножения матрицы на вектор, который основан на ином способе разделения данных – на разбиении матрицы на прямоугольные фрагменты (блоки). При таком способе разделения данных исходная матрица A представляется в виде набора прямоугольных блоков. Вектор b также должен быть разделен на блоки. Блоки матрицы и блоки вектора распределены между процессорами вычислительной системы. Логическая (виртуальная) топология вычислительной системы в данном случае имеет вид прямоугольной двумерной решетки. Размеры процессорной решетки соответствуют количеству прямоугольных блоков, на которые разбита матрица A. На процессоре pi,j, находящемся на пересечении i-й строки и j-го столбца процессорной решетки, располагается блок Ai,j матрицы A и блок bj вектора b.

После перемножения блоков матрицы A и вектора b каждый процессор pi,j будет содержать вектор частичных результатов c'(i,j). Поэлементное суммирование векторов частичных результатов для каждой горизонтальной строки процессорной решетки позволяет получить результирующий вектор c.

Матричное умножение

Задача умножения матрицы на матрицу определяется соотношениями:

(для простоты изложения материала будем предполагать, что перемножаемые матрицы A и B являются квадратными и имеют порядок n×n). Как следует из приведенных соотношений, вычислительная сложность задачи является достаточно высокой (оценка количества выполняемых операций имеет порядок n3).

Основу возможности параллельных вычислений для матричного умножения составляет независимость расчетов для получения элементов сij результирующей матрицы C. Тем самым, все элементы матрицы C могут быть вычислены параллельно при наличии n2 процессоров, при этом на каждом процессоре будет располагаться по одной строке матрицы A и одному столбцу матрицы B. При меньшем количестве процессоров подобный подход приводит к ленточной схеме разбиения данных, когда на процессорах располагаются по несколько строк и столбцов (полос) исходных матриц.

Другой широко используемый подход для построения параллельных способов выполнения матричного умножения состоит в применении блочного представления матриц, при котором исходные матрицы A, B и результирующая матрица C рассматриваются в виде наборов блоков (как правило, квадратного вида некоторого размера m×m). Тогда операцию матричного умножения матриц A и B в блочном виде можно представить следующим образом:

где каждый блок Cij матрицы C определяется в соответствии с выражением:

Полученные блоки Cij также являются независимыми, и, как результат, возможный подход для параллельного выполнения вычислений может состоять в расчетах, связанных с получением отдельных блоков Cij, на разных процессорах. Применение подобного подхода позволяет получить многие эффективные параллельные методы умножения блочно-представленных матриц.

Ленточный алгоритм

При ленточной схеме разделения данных исходные матрицы разбиваются на горизонтальные (для матрицы A) и вертикальные (для матрицы B) полосы. Получаемые полосы распределяются по процессорам, при этом на каждом из имеющегося набора процессоров располагается только по одной полосе матриц A и B. Перемножение полос (а данная операция может быть выполнена процессорами параллельно) приводит к получению части блоков результирующей матрицы C. Для вычисления оставшихся блоков матрицы C сочетания полос матриц A и B на процессорах должны быть изменены. В наиболее простом виде это может быть обеспечено, например, при кольцевой топологии вычислительной сети (при числе процессоров, равном количеству полос) – в этом случае необходимое для матричного умножения изменение положения данных может быть реализовано циклическим сдвигом полос матрицы B по кольцу. После многократного выполнения описанных действий (количество необходимых повторений является равным числу процессоров) на каждом процессоре получается набор блоков, образующий горизонтальную полосу матрицы C.

Рассмотренная схема вычислений позволяет определить параллельный алгоритм матричного умножения при ленточной схеме разделения данных как итерационную процедуру, на каждом шаге которой происходит параллельное выполнение операции перемножения полос и последующего циклического сдвига полос одной из матриц по кольцу.



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 441; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.67.56 (0.007 с.)