Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вентиляция и кондиционированиеСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Отметим, что изоляция человека от внешней среды в помещениях имеет свои отрицательные стороны. Жизнедеятельность человека связана с непрерывным поглощением атмосферного кислорода и выделением около 20 л в час углекислого газа (в состоянии покоя), что ведет к изменению состава воздуха в помещении. Повышение концентрации углекислого газа в воздухе свыше 0,1% по объему негативно сказывается на самочувствии человека, а при концентрации С02, равной 6%, наступает смерть человека. Поэтому необходима непрерывная вентиляция помещений с подачей не менее 37,7 м3/ч свежего воздуха на каждого человека, находящегося в помещении. В жилых помещениях загрязненный углекислым газом теплый воздух собирается в верхней части помещения и удаляется оттуда с помощью естественной вентиляции через специальные вентиляционные отверстия. Поэтому высота стандартных жилых помещений, равная 2,75—2,95 м, складывается из трех составляющих: роста человека (1,7 м), слоя загрязненного воздуха над головой человека (0,75 м) и разделительной защитной прослойки 0,3—0,5 м. Эффективным средством обеспечения комфортных или допустимых параметров надлежащего состава воздуха в помещениях является вентиляция. Вентиляцией называется организованный регулируемый воздухообмен, обеспечивающий удаление из помещения воздуха и подачу на его место свежего. По способу перемещения различают системы естественной и механической вентиляции. Система вентиляции, перемещение воздушных масс в которой осуществляется за счет разности давлений снаружи и внутри здания, называется естественной вентиляцией. Разность давлений обусловлена разностью плотностей наружного и внутреннего воздуха и ветровым напором, действующим на здание. Неорганизованная естественная вентиляция — инфильтрация, или естественное проветривание, — осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давлений снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов — силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация для жилых зданий может достигать 0,5—0,75, а для промышленных предприятий до 1 — 1,5 объема помещения в час. Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная естественная вентиляция. Она может быть вытяжной без организованного притока воздуха и приточно-вытяжной с организованным притоком воздуха. Естественная вытяжная вентиляция без организованного притока воздуха широко применяется в жилых и административных зданиях. Для увеличения располагаемого давления в системах естественной вентиляции на устье вытяжных шахт устанавливают насадки - дефлекторы (рис. 10.1). Усиления тяги происходит благодаря разряжению, возникающему при обтекании дефлектора.
Рис. 10.1. Принципиальная схема дефлектора ЦАГИ: 1 - патрубок; 2 - диффузор; 3 - цилиндрическая обечайка; 4 — зонт
Аэрацией называется организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг (в зависимости от температуры наружного воздуха, скорости и направления ветра). Как способ вентиляции аэрация (рис. 10.2) нашла широкое применение в промышленных зданиях, характеризующихся технологическими процессами с большими тепловыделениями (прокатных цехах, литейных, кузнечных). Поступление наружного воздуха в цех в холодный период года организуют так, чтобы холодный воздух не попадал в рабочую зону. Для этого наружный воздух подают в помещение через проемы, расположенные не ниже 4,5 м от пола.
Рис. 10.2. Схема аэрации промышленного здания Воздухообмен, создаваемый в помещении вентиляционными устройствами, сопровождается циркуляцией воздушных масс, в несколько раз больших объема подаваемого или удаляемого воздуха. Возникающая циркуляция является основной причиной распространения и перемешивания вредных выделений и создания в помещении разных по концентрации и температуре воздушных зон. Так, приточная струя, входя в помещение, вовлекает в движение окружающие массы воз духа, в результате чего масса струи в направлении движения будет возрастать, а скорость падать. При истечении из круглого отверстия на расстоянии 15 диаметров от устья скорость струи составит 20% первоначальной скорости. При организации воздухообмена в помещениях необходимо учитывать физические свойства выделяемых в нем паров и газов и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего — непосредственно в рабочую зону. При выделении газов с плотностью, большей плотности воздуха, из нижней части помещения удаляется 60—70%, а из верхней части — 30—40% загрязненного воздуха. В помещениях со значительными выделениями влаги вытяжка влажного воздуха осуществляется из верхней зоны, а подача свежего — в количестве 60% в рабочую зону и 40% в верхнюю зону. По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции: приточная, вытяжная, приточно-вытяжная и системы с рециркуляцией. По приточной системе воздух подается в помещение после подготовки его в приточной камере. В помещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне. Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например, для вредных цехов, химических и биологических лабораторий. Приточно-вытяжная вентиляция — наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно. В отдельных случаях для сокращения эксплуатационных расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией. В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения вытяжной системой. Количество свежего и вторичного воздуха регулируют клапанами. Свежая порция воздуха в таких системах обычно составляет 20—10% общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности и концентрация их в воздухе, подаваемом в помещение, не превышает 30% ПДК. Применение рециркуляции не допускается и в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи. Расчет потребного воздухообмена при общеобменной вентиляции производят исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена kB — отношение объема воздуха, поступающего в помещение в единицу времени L (м3/ч), к объему вентилируемого помещения V (м3). При правильно организованной вентиляции кратность воздухообмена должна быть значительно больше единицы. При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объема помещения, приходящегося на одного работающего. Отсутствие вредных выделений — это такое их количество в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. В производственных помещениях с объемом воздуха на каждого работающего < 20 м3 расход воздуха на одного работающего должен быть не менее 30 м3/ч. В помещении с Vni = 20÷40 м3 20 м3/ч. В помещениях с Vni > 40 м3 и при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять не менее 60 м3/ч. Необходимый воздухообмен для всего производственного помещения в целом L = п , где п — количество работающих в помещении.
Механической вентиляцией называется система воздухообмена в помещении, обусловленная применением специальных побудителей движения воздуха. Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия вследствие значительного давления, создаваемого вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры нужного воздуха и скорости ветра; подвергать вводимый в помещение воздух предварительной очистке, осушке или увлажнению, подогреву или охлаждению; организовывать оптимальное воздухораспределение с подачей воздуха непосредственно к рабочим местам; улавливать вредные выделения непосредственно в местах их образования и предотвращать их распространение по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу. К недостаткам механической вентиляции следует отнести значительную стоимость ее сооружения и эксплуатации, необходимость проведения мероприятий по борьбе с шумом. Системы механической вентиляции подразделяются на общеобменные, местные, смешанные, аварийные и системы кондиционирования. Общеобменная вентиляция предназначена для вывода избыточной теплоты, влаги и вредных веществ из всего объема помещения. Она применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению. Обычно объем приточного воздуха Lпр, подаваемого в помещение при общеобменной вентиляции, равен объему воздуха LB, удаляемого из помещения. Однако в ряде случаев возникает необходимость нарушить это равенство. Так, в особо чистых цехах электровакуумного производства, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления в производственном помещении, что исключает попадание пыли из соседних помещений. В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10—15%. Существенное влияние на параметры воздушной среды в помещениях оказывают правильная организация и устройство приточных и вытяжных систем. Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции — кондиционирование воздуха. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие строго определенные параметры воздуха создаются в специальных установках, называемых кондиционерами (рис. 10.3).
Рис. 10.3. Схема кондиционера: 1 — заборный воздуховод; 2 — фильтр; 3 — соединительный воздуховод; 4 — калорифер; 5 — форсунки увлажнителя воздуха; 6 — каплеуловитель; 7 — калорифер второй ступени; 8 — вентилятор; 9 — отводной воздуховод
В последние годы для регулирования температуры воздуха в жилых и общественных помещениях широко применяют так называемые сплит-системы. Эти кондиционеры более просты по своему устройству, так как регулируют только один параметр микроклимата в помещении — температуру воздуха. Регулирование температуры воздуха осуществляется за счет его постоянной циркуляции через теплообменник, охлаждающий воздух летом и подогревающий его в холодный период года. Поступление свежего воздуха в помещении осуществляется либо за счет обычного проветривания помещений, либо за счет естественной инфильтрации. Для защиты помещений от попадания в него холодного воздуха применяют воздушные завесы (рис. 10.4). Они предназначены для защиты от прорыва холодного воздуха в помещение через проемы здания (ворота, двери и т.п.). Воздушная завеса представляет собой воздушную струю, направленную под углом навстречу холодному потоку воздуха. Она выполняет роль воздушного шибера, уменьшая прорыв холодного воздуха через проемы. Воздушные завесы необходимо устанавливать у проемов отапливаемых помещений, открывающихся не реже чем один раз в час либо на 40 мин единовременно при температуре наружного воздуха -15 °С и ниже.
Рис. 10.4. Схемы воздушных завес: а - с нижней подачей; б — односторонних; в - двусторонних
Применяют завесы с нижней подачей воздуха и с двухсторонним боковым направлением струй. Количество и температуру воздуха для завесы определяют расчетным путем, причем температура нагрева воздуха для воздушных ворот принимается не более 70 °С, для дверей - не более 50 °С.
10.1 .4. Отопление помещений В зависимости от теплоносителя системы отопления бывают водяные, паровые, воздушные и комбинированные. Применяют также электрическое отопление. Системы водяного отопления наиболее эффективны в санитарно-гигиеническом отношении. Они подразделяются на системы с нагревом воды до 100 °С и выше 100 °С (перегретая вода). В качестве побудителей движения воды используют водяные насосы и эжектирующие устройства. Вода в систему отопления подается либо от собственной котельной предприятия, либо от районной или городской котельной или ТЭЦ. Системы парового отопления бывают низкого (до 70 кПа) и высокого (более 70 кПа) давления. Эти системы применяют главным образом в тех помещениях, в которых пар используется для промышленных целей. Паровое отопление высокого давления разрешается устраивать в производственных помещениях, где технологические процессы не сопровождаются выделением органической пыли или когда пыль неорганического происхождения невзрывоопасна и невоспламеняема. В качестве нагревательных приборов применяют радиаторы, ребристые трубы и регистры из гладких труб. В производственных помещениях со значительными выделениями пыли устанавливают нагревательные приборы с гладкими поверхностями, допускающими их легкую очистку. Поэтому ребристые трубы в таких помещениях не применяют, так как осевшая пыль вследствие нагрева будет пригорать, издавая неприятный запах. Кроме того, пыль при высоком нагреве может быть опасна из-за возможности ее воспламенения. Воздушная система отопления характерна тем, что подаваемый воздух предварительно нагревается в калориферах (водяных, паровых и электрокалориферах). В зависимости от расположения и устройства системы воздушного отопления бывают центральными и местными. В центральных системах, которые часто совмещаются с приточными вентиляционными системами, нагретый воздух подается по системе воздуховодов от расположенного, как правило, вне помещения калорифера. В местных системах нагрев и подача воздуха в определенное место помещения производят отопительными агрегатами (рис. 10.5), которые устанавливают на колоннах или стенах помещения на высоте 3—4 м. В административно-бытовых помещениях находит применение панельное отопление, которое работает за счет отдачи теплоты строительных конструкций, в которых проложены трубы с циркулирующим в них теплоносителем.
Рис. 10.5. Отопительный агрегат
Электрическое отопление в виде электропечей применяют для обогрева кабин, а также отдельно стоящих зданий небольших объемов (посты управления), помещения для обогрева, отдыха и т.п. В последнее время находит применение электроводяное отопление, в котором теплоноситель — вода подогревается в котле электронагревательными элементами. Для определения тепловой мощности системы отопления составляют тепловой баланс часового расхода тепла (Вт) для расчетных зимних условий:
= где — потери тепла через наружные ограждения; — расход тепла на нагревание воздуха; — технические теплопотери на нагрев оборудования, материала, деталей и др.; — технические теплопотери при выносе изделий, материалов и т.п. Теплопотери определяют как сумму потерь тепла через наружные и внутренние ограждения (наружные стены, дверные проемы и др.). Для этого вычерчивают поэтажные планы расположения всех помещений в здании. Для каждого Помещения величину теплопотерь рассчитывают по формуле:
, где - коэффициент теплопередачи ограждения, Вт/(м2·К); , - внутренняя и наружная расчетные температуры, К; — площадь ограждения, м2; — коэффициент, учитывающий ряд дополнительных потерь тепла через ограждения, принимаемый по нормативам. Теплопотери помещений через наружные ограждения являются основными в тепловом балансе часового расхода тепла в здании. Теплопотери через внутреннее ограждение учитываются в тепловом балансе только при разности температур в смежных помещениях 5 °С и более. Общие теплопотери помещения через ограждения составляют
Недостаток тепла в помещениях восполняют отоплением, избыток удаляют вентиляцией. При расчетах тепловую мощность отопительной системы принимают из условия Основными элементами отопительной системы являются нагревательные приборы. Их выбирают в зависимости от назначения помещений. Схема однотрубной системы водяного отопления представлена на рис. 10.6.
Рис 10.6.
Схема однотрубной системы отопления: 1 — циркуляционный насос; 2 — трубопровод горячей воды; 3 — регулирующие краны; 4 — отопительные приборы; 5 — воздушные краны; 6 — трубопровод обратной воды Освещение Виды и нормирование освещения. Освещение подразделяют на естественное (источник — Солнце), искусственное (источники — лампы накаливания, газоразрядные и другие) и совмещенное. Естественный свет лучше по своему спектральному составу, чем искусственный свет, создаваемый любыми источниками света. Кроме того, чем лучше естественная освещенность в помещении, тем меньше времени приходится пользоваться искусственным светом, что позволяет экономить электрическую энергию. Для оценки использования естественного света введено понятие коэффициента естественной освещенности, который определяется как отношение освещенности внутри помещения за счет естественного света к наружной освещенности от всей полусферы небосклона, выраженное в процентах: %
Рис. 10.7. Распределение КЕО при различных видах естественного освещения: а - одностороннее боковое освещение; б - двустороннее боковое освещение; в - верхнее освещение; г - комбинированное освещение; 1 — уровень рабочей поверхности
При недостатке освещенности от естественного света используют искусственное освещение, создаваемое электрическими источниками света. По своему конструктивному исполнению искусственное освещение может быть общим, общим локализованным и комбинированным (рис. 10.8). При общем освещении все места в помещении получают свет от общей осветительной установки. В этой системе источники света распределены равномерно без учета расположения рабочих мест. Средний уровень освещения должен быть равен уровню освещения, требуемого для выполнения предстоящей работы. Эти системы используются главным образом на участках, где рабочие места не являются постоянными. Такая система должна соответствовать трем фундаментальным требованиям. Прежде всего, она должна быть оснащена антибликовыми приспособлениями (сетками, диффузорами, рефлекторами и т.д.). Второе требование заключается в том, что часть света должна быть направлена на потолок и на верхнюю часть стен. Третье требование состоит в том, что источники света должны быть установлены как можно выше, чтобы свести ослепление до минимума и сделать освещение как можно более равномерным. Общая локализованная система освещения предназначена для увеличения освещения посредством размещения ламп ближе к рабочим поверхностям. Светильники при таком освещении часто дают блики, и их рефлекторы должны быть расположены таким образом, чтобы они убирали источник света из прямого поля зрения рабочего. Например, они могут быть направлены вверх. Комбинированное освещение наряду с общим включает местное освещение (местный светильник, например настольная лампа), сосредоточивающее световой поток непосредственно на рабочем месте. Использование местного освещения совместно с общим рекомендуется применять при высоких требованиях к освещенности. Рис. 10.8. Виды искусственного освещения: а — общее; б — общее локализованное; в — комбинированное
Применение одного местного освещения недопустимо, так как возникает необходимость частой переадаптации зрения, создаются глубокие и резкие тени и другие неблагоприятные факторы. Поэтому доля общего освещения в комбинированном должна быть не менее 10% (для помещений, имеющих естественное освещение), т.е. ( / )·100%>10% Кроме естественного и искусственного освещения может применяться их сочетание, когда освещенности за счет естественного света недостаточно для выполнения той или иной работы. Такое освещение называется совмещенным. Для выполнения работы наивысшей, очень высокой и высокой точности в основном применяют совмещенное освещение, так как естественной освещенности, как правило, недостаточно. По назначению искусственное освещение подразделяется на рабочее, аварийное и специальное (эвакуационное, охранное, сигнальное и др.). Рабочее освещение предназначено для выполнения производственного процесса. Аварийное освещение — для продолжения работы при аварийном отключении рабочего освещения. Для аварийного освещения используются лампы накаливания, для которых применяется автономное питание электроэнергией. Светильники функционируют все время или автоматически включаются при аварийном отключении рабочего освещения. Эвакуационное освещение — для эвакуации людей из помещения при аварийном отключении рабочего освещения. Сигнальное освещение — для фиксации границ опасных зон; оно указывает наличие опасности, либо на безопасный путь. Охранное освещение — для указания границ охраняемых территорий. Основным способом защиты от недостаточного освещения является соблюдение норм освещенности, установленных по СНиП 23-05–95. Минимальное допустимое значение КЕО определяется разрядом работы: чем выше разряд, тем больше минимально допустимое значение КЕО. Например, для работы I разряда (наивысшей точности) при боковом естественном освещении минимально допустимое значение КЕО равно 2%, при верхнем — 6%, а для работы III разряда (высокой точности) соответственно — 1,2 и 3%. Важной характеристикой, от которой зависит нормативная освещенность на рабочем месте, является размер объекта различения — минимальный размер наблюдаемого объекта (предмета), отдельной его части или дефекта, которые необходимо различать при выполнении работы. Например, при написании или чтении текста необходимо различать толщину линии буквы, поэтому толщина линии и будет размером объекта различения при написании или чтении текста. Размер объекта различения определяет характеристику работы и ее разряд. Размер объекта менее 0,15 мм соответствует работе наивысшей точности (I разряд), при размере 0,15—0,3 мм — работе очень высокой точности (II разряд); от 0,3 до 0,5 мм — работе высокой точности (III разряд); при размере более 5 мм — грубой работе. Не менее важным показателем системы освещения является контраст объекта с фоном. Контрастом К называется разница между яркостями объекта и фона , отнесенная к яркости фона. Он определяется по формуле где яркость — это отношение величины отраженного от поверхности светового потока Фотр к величине этой поверхности. Величина яркости тем больше, чем больше коэффициент отражения и падающий на поверхность световой поток. Чем больше яркость объекта, тем больший световой поток от него поступает в глаз. Казалось бы, чем больше яркость, тем человек лучше видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую по величине яркость, то интенсивность засветки участков глаза световым потоком, поступающим от фона и объекта, одинакова. В таких случаях объект на фоне становится неразличимым. Чтобы объект был хорошо виден, необходимо различие в яркости объекта и фона. Если объект резко выделяется на фоне (например, черная линия на белом листе), контраст считается большим, при среднем контрасте объект и фон заметно различаются по яркости, при малом контрасте объект слабо заметен на фоне (например, линия бледно-желтого цвета на белом листе). При К< 0,2 контраст считается малым, при К=0,2÷0,5 средним, а при К > 0,5 — большим. Очевидно, что чем меньше размер объекта различения (выше разряд работы) и меньше контраст объекта с фоном, на котором выполняется работа, тем больше требуется освещенность рабочего места и наоборот. Нормы освещенности при искусственном освещении устанавливают величину минимально допустимой освещенности Emin. Для производственных помещений она зависит от разряда работы и контраста объекта с фоном. Разряды работы делят на четыре подразряда в зависимости от характеристики фона и контраста между объектами различения и фоном. Например, для работы I разряда (наивысшей точности) устанавливаются значения минимальной освещенности, приведенные в табл. 10.3. Таблица 10.3
Нормы освещенности при искусственном освещении по СНиП 23-05-95 (извлечения)
Одной из характеристик зрительной работы является фон — поверхность, на которой происходит различение объекта, с которым работает человек. Фон характеризуется способностью поверхности отражать падающий на нее свет. Отражательная способность определяется коэффициентом отражения r. В зависимости от цвета и фактуры поверхности значения коэффициента отражения изменяются в широких пределах 0,02—0,95. Фон считается светлым при r > 0,4; средним при значениях r в диапазоне 0,2—0,4 и темным при r < 0,2. Как очевидно из табл. 10.3, Emin отличаются для различных систем освещения. При комбинированном искусственном освещении, как более экономичном, нормы выше, чем при общем. Действительно, с помощью светильника местного освещения, расположенного вблизи рабочего места, необходимую освещенность можно обеспечить при меньших затратах электрической энергии. Более подробные сведения о нормативных требованиях, предъявляемых к освещению, можно получить в СНиП 23-05—95 «Нормы проектирования. Естественное и искусственное освещение». Нормативные требования к освещению жилых и общественных зданий определены в Санитарно-эпидемиологических правилах и нормативах СанПиН 2.2.1/1278—03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий», извлечения из указанных норм для жилых помещений приведены в табл. 2.6, а для учреждений образования — в табл. 10.4.
Таблица 10.4
Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для образовательных учреждений)
Представленные выше уровни освещенности установлены для нормального зрения. С возрастом острота зрения снижается, и это требует повышения уровня освещения. Зрительная работоспособность. Зрительный комфорт достигается при нормативном и равномерном освещении; при отсутствии бликов и ослепленности; при соответствующей контрастности; при отсутствии пульсаций света и центробежного эффекта. Ослепленность. Находящиеся в поле зрения человека поверхности высокой яркости могут производить неприятное, дискомфортное ощущение или вызывать состояние ослепленности. В результате резко снижается и работоспособность. Источниками высокой яркости являются осветительные установки и источники света. Уменьшение ослепленности может быть достигнуто увеличением высоты установки светильников; уменьшением яркости светильников путем закрытия источников света светорассеивающими стеклами; применением светильников с необходимым защитным углом. Желаемого эффекта по снижению ослепленности человека можно также достичь уменьшением мощности каждого отдельного светильника за счет соответствующего увеличения их числа. Ослепленность может также возникать при больших коэффициентах отражения поверхностей, попадающих в поле зрения. Наибольшая опасность возникает при освещении зеркальных поверхностей, когда свет падает на эти поверхности таком образом, что глаза находятся на направлении зеркального отражения лучей. В этом случае человек видит либо зеркальное отражение источника света, либо размытое, но очень яркое световое пятно. Устранение отраженной ослепленности достигается правильной организацией местного и локализованного освещения и таким расположением светильников, чтобы зеркально отраженные поверхностью лучи не попадали в глаза. Контраст между объектом и фоном. Одним из эффективных средств для повышения контраста является искусственный фон (светлый, если деталь темная, или темный, если деталь светлая). Разновидностью искусственных фонов являются световые столы, на которых поверхности просматриваются в подходящем свете и которые используются при копировании с темных оригиналов. Постоянство освещенности во времени. Изменения освещенности по времени можно классифицировать как: медленные и плавные, частые колебания и пульсации. Медленные изменения вызываются постепенными изменениями сетевого напряжения и факторами, изменяющими освещенность в процессе эксплуатации (загрязнением источников света, снижением светоотдачи и т.д.). Если освещенность при этом сохраняется на уровне не ниже нормативного значения, эти изменения не являются вредными. Причиной частых колебаний являются перемещения светильников, их раскачивание движением воздуха (ветер, сквозняк, вентиляция и т.д.) и колебания напряжения в сети, порождаемые изменение нагрузки. На каждый процент изменения сетевого напряжения источники света реагируют изменениями светового потока в ту же сторону: лампы накаливания – на 3,7%, люминесцентные – на 1%, лампы ДРЛ – на 3%. Устранение колебаний освещенности обеспечивается закреплением светильников и стабилизацией изменений напряжения сети. Пульсации освещенности обусловлены малой инерционностью излучения газоразрядных ламп, световой поток от которых пульсирует при переменном токе промышленной частоты. Эти пульсации неразличимы при фиксировании глазом неподвижной поверхности, но легко обнаруживаются при рассматривании движущихся предметов. Если при пульсирующем освещении быстро махать карандашом на контрастирующем фоне, то карандаш приобретает ясно видимые контуры. Эффективнее пульсации можно обнаружить с помощью стробоскопического волчка, который можно выполнить из белого картона, на поверхности которого нанесены черными линиями радиусы через равн
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 807; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.135.214 (0.018 с.) |