Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теорема наложения и метод расчета эл цепей

Поиск

Метод наложения основан на применении принципа наложения, который формулируется следующим образом:

Ток в любой ветви электрической цепи равен сумме токов, обусловленных действием каждого источника в отдельности, при отсутствии других источников.

При действии только одного из источников напряжения предполагается, что э.д.с. всех остальных источников равны нулю, так же как равны нулю и токи всех источников тока. Отсутствие напряжения на зажимах источников напряжения равносильно короткому замыканию их зажимов. Отсутствие тока в ветви с источником тока равносильно разрыву этой ветви.

Если источник э.д.с. содержит внутреннее сопротивление, то, полагая э.д.с. равной нулю, следует оставлять в его ветви внутреннее сопротивление. Аналогично в случае источника тока с параллельной внутренней проводимостью, следует, разрывая ветвь источника (т.е. полагая J=0), оставлять включенной параллельную ветвь с внутренним сопротивлением.

Пусть в цепи действуют источники с параметрами E и J, I//n и I/n – токи n-ой ветви, создаваемые каждым из этих источников в отдельности. Искомый ток


 

Теорема компенсации

В электрической цепи любой пассивный элемент можно заменить эквивалентным источником напряжения, э.д.с. которого равна падению напряжения на данном элементе E=U=IR и направлена навстречу ему.

Справедливость этого утверждения вытекает из того, что любое из слагающих падения напряжений, входящих в уравнения по второму закону Кирхгофа может быть перенесено в другую сторону уравнения с противоположным знаком, т.е. может рассматриваться как дополнительная э.д.с., направленная навстречу току.

 
 

 

Рис. 31. Иллюстрация к теореме компенсации.

 

Если в ветвь ''ab'' рис.31,а последовательно включить две равные, но противоположно направленные э.д.с. E/=E//=IR, то точки ''a'' и ''d'', ''c'' и ''b'' оказываются соответственно точками одинакового потенциала:

Таким образом, закоротив точки ''a'' и ''d'' и исключив, получим этот участок из ветви «ab», получим схему рис. 31,в. Ток ветви при этом не изменится.


 

Теоремы об экв ист ЭДС и тока и расчет цепей на их основе.

Теорема об эквивалентном источнике напряжения.

По отношению к зажимам произвольно выбранной ветви оставшаяся активная часть цепи (активный двухполюсник) может быть заменена эквивалентным генератором. Параметры генератора: его э.д.с. Eэкв. Равна напряжению на зажимах выделенной ветви при условии, что эта ветвь разомкнута, т.е. Eэкв.=Uxx; его внутренне сопротивление r0 равно эквивалентному сопротивлению пассивной электрической цепи со стороны зажимов выделенной ветви.

Данная теорема доказывается следующим образом: в ветвь ab две одинаковые по величине и противоположно направленные э.д.с. E1=E2 при условии, что они равны напряжению холостого хода между зажимами a-b: E1=E2=Uxx.

В соответствии с принципом наложения определяем ток Ik как сумму двух токов: Ik, возникающего под действием э.д.с. E1 и всех источников оставшейся части схемы, и тока Ik//, возникающего от независимого действия источника E2.

Ток Ik/=0, т.к. E1=Uxx

Ток Ik/=Ik в эквивалентной схеме, называемой схемой Гемгольца-Тевенина равен

Теорема об эквивалентном источнике тока.

Ток в любой ветви «a-b» линейной электрической цепи не изменится, если электрическую цепь, к которой подключена данная ветвь, заменить эквивалентным источником тока. Ток этого источника должен быть равен току между зажимами a-b закороченными накоротко, а внутренняя проводимость источника тока должна равняться входной проводимости пассивной электрической цепи со стороны зажимов «a» и «b» при разомкнутой ветви «ab».


 

Действительно, из условия эквивалентности источников тока и напряжения следует: источник напряжения э.д.с. которого равна Uxx, а внутренне сопротивление равно r0 может быть заменен источником тока:


Jэкв., определенное по формуле (43), является током короткого замыкания, т.е. током, проходящим между зажимами «a-b», замкнутыми накоротко.

Искомый ток ветви «k» равен:

(44)

где .

 



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 559; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.85.108 (0.006 с.)