Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Решение уравнений с комплексным переменнымСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Рассмотрим сначала простейшее квадратное уравнение z2 = a, где а - заданное число, z - неизвестное. На множестве действительных чисел это уравнение: 1) имеет один корень z = 0, если а = 0; 2) имеет два действительных корня z1,2 = , если а>0; 3) не имеет действительных корней, если а<0. На множестве комплексных чисел это уравнение всегда имеет корень. Задача 1. Найти комплексные корни уравнения z2 = a, если: 1)а = -1; 2)а = -25; 3)а = -3. 1)z2 = -1. Так как i2 = -1, то это уравнение можно записать в виде z2 = i2, или z2 - i2 = 0. Отсюда, раскладывая левую часть на множители, получаем (z-i)(z+i) = 0, z1 = i, z2 = -i.Ответ. z1,2 = i. 2) z2 = -25. Учитывая, что i2 = -1,преобразуем это уравнение: z2 = (-1)25, z2 = i2 52, z2 - 52 = 0, (z-5i)(z+5i) = 0, откуда z1 = 5i, z2 = -5i.Ответ.z 1,2 = 5i. 3) z2 = -3, z2 = i2()2, z2 - ()2i2 = 0, (z - i)(z + i) = 0, z1 = i, z 2 = - i. Ответ. z1,2 = i. Вообще уравнение z2 = a, где а < 0 имеет два комплексных корня: Z1,2= i. Используя равенство i2 = -1, квадратные корни из отрицательных чисел принято записывать так: = i, = i = 2i, = i . Итак, определен для любого действительного числа а (положительного, отрицательного и нуля). Поэтому любое квадратное уравнение az2 + bz + c = 0, где а,b,с- действительные числа, а 0, имеет корни. Эти корни находятся по известной формуле: Z1,2 = . Задача 2. Решить уравнение z2-4z+13=0. По формуле находим: z1,2 = = = = =2 3i. Заметим, что найденные в этой задаче корни являются сопряженными: z1=2+3i и z2=2-3i. Найдем сумму и произведение этих корней: z1+z2=(2+3i)+(2-3i)=4, z1z2=(2+3i)(2-3i)=13. Число 4- это 2-й коэффициент уравнения z2-4z+13=0, взятый с противоположным знаком, а число 13- свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если z1 и z2 - корни уравнения az2+bz+c = 0, z1+z2 = - , z1z2 = . Задача 3. Составить приведенное квадратное уравнение с действительными коэффициентами, имеющие корень z1=-1-2i. Второй корень z2 уравнения является числом, сопряженным с данным корнем z1, то есть z2=-1+2i. По теореме Виета находим P=-(z1+z2)=2, q=z1z2=5. Ответ z2-2z+5=0. Вопрос Та запись комплексного числа, которую мы использовали до сих пор, называется алгебраической формой записи комплексного числа. Часто бывает удобна немного другая форма записи комплексного числа. Пусть и φ = arg z. Тогда по определению аргумента имеем: Отсюда получается где i - мнимая единица; a - действительная часть: a = Re z; bi - мнимая часть: b = Im z; числа вида bi - чисто мнимые; плоскость Oxy - комплексная плоскость; ось Ох - действительная ось; ось Oy - мнимая ось; Arg z - множество аргументов числа z: Вопрос 1 сложение При сложении и вычитании складываются отдельно действительные части чисел, и отднльно мнимые части чисел и опять же число записывается в виде z=a+bi Вопрос Формула Муавра и извлечение корней из комплексных чисел
|
||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 1179; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.216.15 (0.005 с.) |