ТОП 10:

Геометрическая интерпретация комплексного числа



Вопрос

Множество - это совокупность, класс отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Объекты, входящие в эту совокупность, называются элементами множества.
Множества обозначаются заглавными буквами латинского алфавита , а элементы множества- строчными.
Приведем примеры множеств.
Классы (множества) чисел: N – натуральные числа, Z – целые числа, Q- рациональные числа, R- действительные (вещественные) числа, C – комплексные числа.
Виды множеств : конечные множества, бесконечные, пустые, универсальные.
Конечные и бесконечные множества в свою очередь подразделяются на неупорядоченные и упорядоченные; неупорядоченные бесконечные – на счетные и несчетные.
Существует два основных способа задания неупорядоченных множеств:
1. перечисление всех его элементов;
2. описание характеристического (общего) свойства его элементов.
Первым способом задаются конечные множества.
Примеры:
А – множество чисел, являющихся делителями числа 20: А = {1, 2, 4, 5, 10, 20}.
В – список группы: В = {Архипов, Белов,…}.
Вторым способом можно задать конечные множества, бесконечные, пустые. Множество элементов. Обладающих характеристическим свойством Р, обозначается:
{x | P(x)} и читается так: множество всех х таких, что х обладает свойством Р(х).

К множеству целых чисел относятся все положительные или отрицательные числа, не являющиеся дробями, и нуль. Например, ...-3, -2, -1, 0, 1, 2, 3 ... Множество целых чисел бесконечно. Положительные целые числа также называются натуральными.

Записать множество целых чисел можно так Z={... -3 , -2 , -1, 0 , 1 , 2 , 3 ...}

Вопрос

Комплексным числом называется выражение вида a + ib, где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом: 1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
a = c и b = d.

2. Суммой двух комплексных чисел a + ib и c + id называется комплексное число

a + c + i(b + d).

3. Произведением двух комплексных чисел a + ib и c + id называется комплексное число

acbd + i(ad + bc).
 
 

Комплексные числа часто обозначают одной буквой, например, z = a + ib. Действительное число a называется действительной частью комплексного числа z, действительная часть обозначается a = Re z. Действительное число b называется мнимой частью комплексного числа z, мнимая часть обозначается b = Im z. Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

 

Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi, например, 0 + i3 = 3i. Чисто мнимое число i1 = 1i = iобладает удивительным свойством:

Вопрос

Рассмотрим решение квадратного уравнения х2 +1 = 0. Отсюда х2 = -1. Число х, квадрат которого равен –1, называется мнимой единицей и обозначается i. Таким образом , i2 = -1, откуда i = . Решение квадратного уравнения, например, х2 – 8х + 25 = 0, можно записать следующим образом: х = 4 = 4 = 4 = 4 3 = 4 3i.

Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается а + bi, где a и b- действительные числа, а i – мнимая единица. Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.

Сложение комплексных чисел. Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a+c) + (b+d)i. Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а, (а+bi) + (а-bi) = 2а. Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комлексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d. Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z = a + bi = 0, если a = 0,b = 0. Действительные числа являются частным случаем комплексных чисел. Если b = 0, то a + bi = a - действительное число. Если а = 0, b 0, то a + bi = bi – чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит, (а+bi) - (c+di) = (a-c) + (b-d)i.

Произведение комплексных чисел z 1= a + bi и z2 = c + di называется комплексное число z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i. Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем: (a + bi):(c + di) = = = + i.

Степень числа i является периодической функцией показателя

с периодом 4. Действительно, i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.

Вопрос

Та запись комплексного числа, которую мы использовали до сих пор, называется алгебраической формой записи комплексного числа. Часто бывает удобна немного другая форма записи комплексного числа. Пусть и φ = arg z. Тогда по определению аргумента имеем:

Отсюда получается
z = a + bi = r(cos φ + i sin φ).
Такая форма называется тригонометрической формой записи комплексного числа. Как видно, для того, чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической форме, нужно найти его модуль и один из аргументов.
Алгебраическая форма комплексных чисел (рис. 5.1)
Обозначения, терминология

где i - мнимая единица; a - действительная часть: a = Re z; bi - мнимая часть: b = Im z; числа вида bi - чисто мнимые; плоскость Oxy - комплексная плоскость; ось Ох - действительная ось; ось Oy - мнимая ось;
- число, сопряженное числу z = a + bi;
- модуль комплексного числа;
либо , - аргумент комплексного числа z (главное значение аргумента);

Arg z - множество аргументов числа z:

Вопрос

1 сложение
2вычитание
3умножение
4деление
5возведение в степень (формула Муавтра)
6извлечение корня
7решение уравнений

При сложении и вычитании складываются отдельно действительные части чисел , и отднльно мнимые части чисел и опять же число записывается в виде z=a+bi
Умножаются комплексные число самым обычным способам, умножение двух скобок, надеюсь это все умеют делать . А после этого находим подобные слогаемые , И ПОМНИТЕ I В КВАДРАТЕ РАВНО -1
Деление производится как и умножение , только там один единственный способ . Нужно домножить дробь на комплексное число , которое сопрежено со знаменателем . В ЗНАМЕНАТЕЛЕ ДОЛЖНО ПОЛУЧИТЬСЯ ЧИСЛО ДЕЙСТВИТЕЛЬНОЕ (БЕЗ МНИМОЙ ЧАСТИ ....PS ТО ЕСТЬ БЕЗ I

Вопрос

Формула Муавра и извлечение корней из комплексных чисел
Формула Муавра.Эта формула позволяет возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид:
zn = [r(cos φ + isin φ)]n = rn(cos nφ + isin nφ),
где r — модуль, а — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведенная формуле справедлива при любом целом n, не обязательно положительном.Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа:
z1 / n = [r(cos(φ + 2πk) + isin(φ + 2πk))]1 / n =

 

Формула Муавра
Пусть комплексное число z представлено в тригонометрической форме: z = r(cosφ + i sinφ), где r – модуль данного числа, а φ его аргумент. Поскольку при умножении комплексных чисел их модули умножаются, а аргументы складываются, имеем: z2 = r2(cos2φ + i sin2φ), z3 = r3(cos3φ + i sin3φ), … Поэтому легко доказать (например, методом полной математической индукции) формулу Муавра, имеющую вид zn = rn(cosnφ + i sin). С помощью формулы Муавра можно получить формулы, выражающие cosи sinnφ через синус и косинус числа φ: здесь – биномиальные коэффициенты. Формула названа по имени установившего её в 1707 году математика И. Муавра, друга великого И. Ньютона; современный вид формуле придал Л. Эйлер.

 

Вопрос

Решение уравнений высших степеней.

В общем случае уравнение степени выше четвертой не разрешимо в радикалах. Однако, иногда можно отыскать корни уравнения высшей степени, представив его в виде призведения многочленов степени не выше четвертой. Таким образом, разложение многочлена на множители является основным методом решения таких уравнений, поэтому, рекомендуем подробно изучить этот раздел, прежде чем двигаться дальше.

Достаточно часто рассматриваются уравнения высших степеней с целыми коэффициентами. В этом случае можно попытаться найти рациональные корни и понизить степень исходного уравнения хотя бы до четвертой делением многочлена на многочлен.

На их решении и остановимся.

Уравнения высших степеней с целыми коэффициентами.

Любое уравнение вида можно свести к приведенному уравнению той же степени домножив обе его части на и выполнив замену переменной

Полученные коэффициенты тоже будут целыми.

Таким образом, будем решать приведенное уравнение степени n с целыми коэффициентами вида

Алгоритм решения.

Находим целые корни уравнения.

Целые корни уравнения , i=1, 2, …, m (m – количество целых корней уравнения) находятся среди делителей свободного члена . То есть, первым делом выписываем делители свободного члена и подставляем их по очереди в исходное равенство для проверки. Перебираем их по очереди, пока не получим тождество. Как только тождество получено, то первый целый корень уравнения найден и уравнение предстает в виде , где - корень уравнения, а - частное от деления на .

Продолжаем подставлять выписанные ранее делители в уравнение , начиная с (так как корни могут повторяться). Как только получаем тождество, то корень найден и уравнение предстает в виде , где - частное от деления на .

И так продолжаем перебор делителей, начиная с . В итоге найдем все m целых корней уравнения и оно представится в виде , где - многочлен степени n-m. Весь этот процесс удобно представлять в виде схемы Горнера.

Дробных корней приведенное уравнение с целыми коэффициентами иметь не может.

Находим оставшиеся корни (иррациональные и/или комплексные) из уравнения любым способом.


Ребят вот ещё ссылка для 8 ворд нихуя как надо не открывает))

 

http://www.cleverstudents.ru/equations_of_higher_degree.html

Вопрос

Интегрирование дробно-рациональных функций.

Определение дробно-рациональной функции.

Определение 1.

Целой функцией называется многочлен (полином).

Определение 2.

Дробно-рациональной функцией называется дробь, числителем и знаменателем которой являются многочлены.

Определение 3.

Дробно-рациональная функция называется неправильной рациональной дробью, если степень числителя не меньше степени знаменателя(n m).

Определение 4. Дробно-рациональная функция называется правильной, если степень числителя меньше степени знаменателя.

Теорема:

Любую неправильную рациональную дробь можно представить в виде суммы целой функции и правильной рациональной дроби.

Постановка задачи интегрирования дробно-рациональной функции.

- задача свелась к интегрированию правильной рациональной дроби.

Простейшие рациональные дроби.

Простейшими рациональными дробями являются рациональные дроби:

1)

2)

3)

Выделяем полный квадрат и делаем замену переменной:

Тогда интеграл примет вид:

Делаем обратную замену переменной и получаем окончательный ответ.

Разложение правильной рациональной дроби на сумму простейших дробей.

Дана правильная дробь:

Теорема 1. Если знаменатель Q(x) имеет любые корни, то правильная дробь разлагается на сумму простейших дробей 1 и 2 типа. (1)

Интегрирование правильной рациональной дроби.

сумме интегралов от простейших дробей (см. формулу 1 из 9.4).

 

Вопрос

Определение

Областью определения функции (выражения f(x) ) называют множество всех значений x , для которых функция (выражение) имеет смысл.

Область определения функции обозначается как или D(f) или D(y)

Вопрос

1. Метод оценки (границ).

Для нахождения множества значений функции сначала находят множество значений аргумента, затем, используя свойства неравенств, отыскивают соответствующие наименьше и наибольшее значения функции функции. Если есть возможность путем тождественных преобразований получить функцию, которая на всей области определения или на заранее заданном множестве является непрерывной и либо только возрастающей либо только убывающей, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.

 

Пример 1. Найдите множество значений функции y=5 - .

Из определения квадратного корня следует, что 4 - x2 0, решая квадратичное неравенство получаем, что -2 x 2. разобьем промежуток [-2; 2] на два промежутка [-2; 0] и (0; 2]. Первому промежутку соответствует неравенство -2 x 0, а второму соответствует 0 < x 2. На первом промежутке переменная х принимает неотрицательные значения, а на втором - положительные.

Возведем в квадрат каждое из этих двойных неравенств, в результате получим 0 x2 4.
Умножим все три части неравенства на - 1, получим неравенство

- 4 - x2 0.
Прибавим к трем частям неравенства 4 и получим

0 4 - x2 4.
Введем вспомогательную переменную предположив, что

t = 4 - x2, где 0 t 4.

Функция y = на указанном промежутке непрерывна и возрастает, поэтому свои наименьшее и наибольшее значения принимает на концах промежутка и, следовательно, 0 2 тогда произведя обратную замену переменных получим неравенство 0 2. Прибавим к трем частя последнего двойного неравенств 5, умножив его предварительно на - 1, получим 3 5 - 5.

Множество значений функции y = 5 - является множество [3; 5].

 

Пример 2. Найти множество значений функции y = 5 - 4sinx.

Из определения синуса следует, -1 sinx 1. Далее воспользуемся свойствами числовых неравенств.

-4 - 4sinx 4, (умножили все три части двойного неравенства на -4);

1 5 - 4sinx 9 (прибавили к трем частям двойного неравенства 5);

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют. В данном случаее множество значений функции y =5 - 4sinx есть множество [1; 9].

 

Пример 3. Найти множество значений функции y = sinx + cos x.

Преобразуем выражение sinx + cos x = sinx +sin( - x) =
= 2sin((x + - x)/2)cos((x + + x)/2) = 2sin{ )cos(x + ) =
= cos(x + ).

Из определения косинуса следует -1 cosx 1;

-1 cos(x + } 1;

- cos( x + ) ;

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением, если таковые существуют, множество значений функции y = cos(x + ) есть множество [- ; ]. Множество значений функции

y = sinx + cosx есть множество чисел [- ; ].

 

Пример 4. Найти множество значений функции y = 3sinx + 7cos x.

Преобразуем выражение 3sinx + 7cos x. Заметим, что 32 + 72 = 9 + 49 = 58 =
3sinx + 7cos x = ( sinx + cosx).
Так как < 1 и < 1. и ( )2 + ( )2= 1, то найдется такое число что cos = и sin = . Тогда 3sinx + 7cos x = (cos sinx + sin cosx) = sin( + x).

Из определения синуса следует, что при любом х справедливо неравенство -1 sinx 1 и, из периодичности этой функции, следует, что

-1 sin( + x) 1, тогда умножая все части двойного неравенства на , имеем - sin( + x) .

Множество значений функции y = 3sinx + 7cos x является множество [ - ; ].

Вопрос

Пасаны извени но это реально большая пизда нет у меня вариантов как это найти))

Вопрос

Вопрос

Вопрос

Вопрос

No)))

Вопрос

1.Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй.
(a+b)2=a2+2ab+b2

2.Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.
(a-b)2=a2-2ab+b2

3.Произведение суммы двух величин на их разность равно разности их квадратов.
(a+b)(a-b)=a2-b2

4.Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.
(a+b)3=a3+3a2b+3ab2+b3

5.Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.
(a-b)3=a3-3a2b+3ab2-b3
6. Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.
(a+b)(a2-ab+b2)=a3+b3

7. Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.
(a-b)(a2+ab+b2)=a3-b3

Всем удачи чуваки))

Вопрос

Множество - это совокупность, класс отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Объекты, входящие в эту совокупность, называются элементами множества.
Множества обозначаются заглавными буквами латинского алфавита , а элементы множества- строчными.
Приведем примеры множеств.
Классы (множества) чисел: N – натуральные числа, Z – целые числа, Q- рациональные числа, R- действительные (вещественные) числа, C – комплексные числа.
Виды множеств : конечные множества, бесконечные, пустые, универсальные.
Конечные и бесконечные множества в свою очередь подразделяются на неупорядоченные и упорядоченные; неупорядоченные бесконечные – на счетные и несчетные.
Существует два основных способа задания неупорядоченных множеств:
1. перечисление всех его элементов;
2. описание характеристического (общего) свойства его элементов.
Первым способом задаются конечные множества.
Примеры:
А – множество чисел, являющихся делителями числа 20: А = {1, 2, 4, 5, 10, 20}.
В – список группы: В = {Архипов, Белов,…}.
Вторым способом можно задать конечные множества, бесконечные, пустые. Множество элементов. Обладающих характеристическим свойством Р, обозначается:
{x | P(x)} и читается так: множество всех х таких, что х обладает свойством Р(х).

К множеству целых чисел относятся все положительные или отрицательные числа, не являющиеся дробями, и нуль. Например, ...-3, -2, -1, 0, 1, 2, 3 ... Множество целых чисел бесконечно. Положительные целые числа также называются натуральными.

Записать множество целых чисел можно так Z={... -3 , -2 , -1, 0 , 1 , 2 , 3 ...}

Вопрос

Комплексным числом называется выражение вида a + ib, где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом: 1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
a = c и b = d.

2. Суммой двух комплексных чисел a + ib и c + id называется комплексное число

a + c + i(b + d).

3. Произведением двух комплексных чисел a + ib и c + id называется комплексное число

acbd + i(ad + bc).
 
 

Комплексные числа часто обозначают одной буквой, например, z = a + ib. Действительное число a называется действительной частью комплексного числа z, действительная часть обозначается a = Re z. Действительное число b называется мнимой частью комплексного числа z, мнимая часть обозначается b = Im z. Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

 

Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi, например, 0 + i3 = 3i. Чисто мнимое число i1 = 1i = iобладает удивительным свойством:

Геометрическая интерпретация комплексного числа

Всякое комплексное число z = (x, y) можно изобразить как точку на плоскости с координатами x и y. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью, при этом ось Ox называется действительной, а Oy -мнимой.

Расстояние r точки z от нулевой точки, т. е. число

называется модулем комплексного числа z и обозначается символом |z|.

Число

называем аргументом комплексного числа z и обозначаем символом θ = arg z. При заданном r углы, отличающиеся на , соответствуют одному и тому же числу. В этом случае записываем называем главным значениемаргумента.

Числа r и θ называют полярными координатами комплексного числа z. В этом случае

z = (x, y) = (r cos θ, r sin θ) = r(cos θ + i sin θ)

называется тригонометрической формой комплексного числа.

Если z1 = (r1 cos θ1, r1 sin θ1), z2 = (r2 cos θ2, r2 sin θ2), то

z1z2 = (r1r2 cos(θ1 + θ2), r1r2 sin(θ1 + θ2)),

Для n-й степени числа z = (r cos θ, r sin θ) формула приобретает вид zn = (rn cos , rn sin ).

При r = 1 соотношение приобретает вид zn = (cos , sin ) и называется формулой Муавра.

Корень n-й степени из комплексного числа z имеет n различных значений, которые находятся по формуле

(1)

Вопрос

Рассмотрим решение квадратного уравнения х2 +1 = 0. Отсюда х2 = -1. Число х, квадрат которого равен –1, называется мнимой единицей и обозначается i. Таким образом , i2 = -1, откуда i = . Решение квадратного уравнения, например, х2 – 8х + 25 = 0, можно записать следующим образом: х = 4 = 4 = 4 = 4 3 = 4 3i.

Числа вида 4+3i и 4-3i называют комплексными числами. В общем виде комплексное число записывается а + bi, где a и b- действительные числа, а i – мнимая единица. Число а называется действительной частью комплексного числа, bi-мнимой частью этого числа, b- коэффициентом мнимой части комплексного числа.

Сложение комплексных чисел. Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a+c) + (b+d)i. Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а, (а+bi) + (а-bi) = 2а. Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комлексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d. Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z = a + bi = 0, если a = 0,b = 0. Действительные числа являются частным случаем комплексных чисел. Если b = 0, то a + bi = a - действительное число. Если а = 0, b 0, то a + bi = bi – чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит, (а+bi) - (c+di) = (a-c) + (b-d)i.

Произведение комплексных чисел z 1= a + bi и z2 = c + di называется комплексное число z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i. Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем: (a + bi):(c + di) = = = + i.

Степень числа i является периодической функцией показателя

с периодом 4. Действительно, i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.







Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.85.245.126 (0.042 с.)