Диаграмма растворимости двойной системы. Несмешивающиеся. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Диаграмма растворимости двойной системы. Несмешивающиеся.



При отсутствии в системе твердых фаз диаграмма состояния состоит из области существования одной жидкой фазы (т. наз. области гомогенности) и области сосуществования двух насыщенных жидких растворов разного состава, образующих несмешивающиеся друг с другом слои (рис. 7). Кривая, разделяющая эти области, наз. бинодалью. Так, при температуре Т1 в равновесии находятся р-р компонента В в А (его состав отвечает точке С) и р-р А в В (его состав отвечает точке D). Если однородный р-р 1 охладить до температуры Т1, он распадется на две жидкие фазы.

Рис. 7 Диаграмма растворимости двойной системы, компоненты к-рой А и В ограниченно растворимы друг в друге;

1 область существования однородного р-ра,

2 область сосуществования двух насыщенных р-ров;

ECKDF - бинодаль, CD - нода, К -верхняя критич. точка растворимости.

Обычно при повышении т-ры взаимная растворимость жидкостей увеличивается, поэтому по своим свойствам оба насыщенных р-ра, составы к-рых изменяются по отрезкам бинодали ЕК и KF, сближаются. Наконец, при т-ре Tк различие между ними исчезает; эта т-ра наз. критической т-рой растворимости (смешения), выше нее может существовать лишь одна жидкая фаза. Большинство систем с расслоением р-ров характеризуются только одной критич. т-рой р-римости, чаще всего верхней, т. е. на диаграмме состояния имеют незамкнутую снизу бинодаль. Если в таких системах не образуются хим. соед., область сосуществования двух жидких фаз ограничена снизу кривой кристаллизации одного из компонентов при т-ре превращения жидкая фаза 1 D жидкая фаза 2 + твердая фаза. Такое трехфазное равновесие наз. монотектическим; оно по своей термодинамич. природе аналогично эвтектическому или эвтектоидному. При синтектическом трехфазном равновесии две жидкие фазы взаимодействуют с образованием твердого соед. Такое равновесие аналогично перитектическому. В нек-рых системах бинодаль имеет форму замкнутой кривой (овал), т. е. система имеет две т-ры смешения верхнюю и нижнюю.

Диаграмма равновесия жидкость-пар.

При р = const каждому составу жидкой смеси отвечает определенная т-ра равновесия с паром и определенный состав пара, отличающийся, как правило, от состава жидкой смеси. На диаграмме состояния (рис. 8, а) кривые кипения и конденсации изображают зависимости т-р начала кипения и конденсации от состава и отделяют поля жидкости L и пара V от поля (L + V) гетерогенных состояний жидкость-пар. На кривой кипения м. б. экстремум: максимум (рис. 8, б) или минимум (рис. 8, в); в этих точках кривая кипения касается кривой конденсации, т. е. составы равновесных жидкости и пара совпадают. Жидкие смеси такого состава полностью выкипают, подобно чистым жидкостям, при постоянной т-ре без изменения состава(азеотропные).

Диаграммы состояния, описывающие равновесия двухкомпонентных твердых р-ров с жидкими р-рами и жидких р-ров с паром, подобны.

Рис. 8. Диаграммы состояния, двойной системы, описывающие равновесие жидкость - пар. L и V области существования жидкости и пара соотв.. (L + V) область сосуществования жидкой и паровой фаз;

а система без азеотропной точки;

б и в два типа азеотропных смесей.

 

 

Зависимость растворимости газов в жидкости определяется законом Генри:

«Растворимость газа в жидкости прямо пропорциональна парциальному давлению газа при постоянной температуре».

Условием равновесного распределения вещества между газом и жидкостью является равенство химических потенциалов между жидкой и газовой фазами:

Mжг

 

C=Г·P – закон Генри.

Г - постоянная Генри, C – мольная доля растворенного вещества.

Уравнение применимо для идеальных растворов. Если происходит диссоциация или ассоциация:

Cn=Г·P

n-коэффициент, учитывающий изменение числа частиц в растворе.

Вообще, при растворении газа в жидкости устанавливается равновесие:

Газ + Жидкость = Насыщенный раствор газа в жидкости

При этом объем системы существенно уменьшается. Следовательно, повышение давления должно приводить к смещению равновесия вправо, т. е. к увеличению растворимости газа; и наоборот.

Растворимость газа в жидкости зависит от ряда факторов: природа растворителя и растворимого вещества, давления, газовой фазы и температуры.

Наибольшее влияние на растворимость газов в жидкостях оказывает природа веществ. Так, в 1 литре воды при t = 18 °C и P = 1 атм. растворяется 0.017 л. азота, 748.8 л. аммиака или 427.8 л. хлороводорода. Аномально высокая растворимость газов в жидкостях обычно обусловливается их специфическим взаимодействием с растворителем – образованием химического соединения (для аммиака) или диссоциацией в растворе на ионы (для хлороводорода). Газы, молекулы которых неполярны, растворяются, как правило, лучше в неполярных жидкостях – и наоборот. Зависимость растворимости газов от давления выражается законом Генри (Генри–Дальтона). Газы, способные к специфическому взаимодействию с растворителем, данному закону не подчиняются.

Растворимость газов в жидкостях существенно зависит от температуры; количественно данная зависимость определяется уравнением Клапейрона–Клаузиуса (здесь X – мольная доля газа в растворе, λ – тепловой эффект растворения 1 моля газа в его насыщенном растворе):

 

Как правило, при растворении газа в жидкости выделяется теплота (λ < 0), поэтому с повышением температуры растворимость уменьшается. Растворимость газов в жидкости сильно зависит от концентрации других растворенных веществ.

Зависимость растворимости газов от концентрации электролитов в жидкости выражается формулой Сеченова (X и Xo – растворимость газа в чистом растворителе и растворе электролита с концентрацией C):

Таким образом растворение газов в воде представляет собой экзотермический процесс, их растворимость с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа - это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Значит, простым кипячением воды можно удалить из воды весь растворенный в ней воздух. Также процесс растворения подчиняется принципу Ле Шателье.

16. Основные понятия химической кинетики - механизм химической реакции, виды систем, виды реакций, скорость химической реакции.

Механизм реакции – детальное ее описание с учетом всех промежуточных стадий и промежуточных веществ, природы взаимодействия реагирующих частиц, характера разрыва связей, изменения энергии химической системы на всем пути ее перехода из исходного в конечное состояние.

Цель изучения механизма реакции – возможность управлять ходом реакции, ее направлением и эффективностью.

Химическая кинетика изучает скорость химической реакции и зависимость ее от различных факторов, а также механизм протекания химических реакций.

Скоростью химической реакции называют число элементарных актов реакции, происходящих в единицу времени.

Скорость химической реакции зависит от:

1) концентрации реагирующих веществ;

2) температуры;

3) присутствия катализаторов;

4) природы реагирующих веществ;

5) степени измельчения твердого вещества;

6) перемешивания, если вещества находятся в растворенном состоянии.

Виды систем

Совокупность реагирующих веществ, мысленно или реально выделенная их окружающей среды, называется химической системой.

Фаза однородная часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком. Вещество может находиться в трёх фазах: жидкой, твёрдой и газообразной.

Система, состоящая из одной фазы, называется гомогенной. Система, состоящая из двух или более фаз, называется гетерогенной ( на поверхности раздела фаз ).

Виды реакций

Химическая реакция, протекающая в гомогенной системе, называется гомогенной реакцией. Химическая реакция, протекающая в гетерогенной системе, называется гетерогенной реакцией.

Гомогенными являются процессы в растворах и реакции между газами.

Гетерогенные реакции протекают в тех случаях, когда в системе имеется поверхность раздела (твердое тело - жидкость, твердое тело - газ, жидкость - газ, две несмешивающиеся между собой жидкости и т.д.)

Дальше углубленно:

Реакции первого порядка- это реакции, в которых скорость зависит от концентрации только одного реагента в первой степени. Уравнению первого порядка следуют многие химические реакции. Например, С2Н5ОН = С2Н4 + Н2О

Реакции второго порядка это реакция, в которой скорость пропорциональна квадрату концентрации отдельного реагента или концентрациям каждого из двух реагирующих веществ в первой степени. Например: 1) 2НВr = Н2 + Вr2 или 2) CH3Br + KOH = CH3OH + KBr

Реакции третьего порядка - это реакция, в которой скорость может зависеть от концентрации одного реагента в третьей степени, либо концентрации одного реагента во второй степени и второго реагента в первой степени, либо от концентрации каждого из трех реагентов в первой степени.

Реакции нулевого порядка- это реакция, в которой скорость не зависит от концентраций реагентов и определяется другими лимитирующими факторами, например площадью поверхности катализатора (в реакциях гетерогенного катализа) или поглощением света (в фотохимических реакциях).

Скорость реакции

Скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени (вступившего в реакцию или образовавшегося в результате реакции) в единице объема системы (для гомогенной р-и) или на единице площади поверхности раздела фаз (для гетерогенной реакции).

Для определения скорости реакции можно использовать и величины, пропорциональные числу актов: изменение концентрации, давления, окраски во времени.

Средней скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема всей системы.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 486; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.222.122.246 (0.014 с.)