Системы оцифровки видеоизображений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Системы оцифровки видеоизображений



Системы оцифровки видеоизображений предназначены для захвата кадров видео и сохранения их на компьютере, также такие системы могут иметь на­звание перехватчики видео (image capture). Они позволяют получать на ком­пьютере с видеокамеры или видеомагнитофона, а при наличии тюнера и с антенны, отдельные телевизионные кадры и их связанные последовательнос­ти для дальнейшей программной обработки и вывода на принтер или обратно на видео.

Захват кадра осуществляется разделением с помощью цветового декодера принимаемого аналогового видеосигнала на компоненты (RGB), получением их цифрового представления и записи его в оперативную память (как правило, это память самой видеоплаты, емкость которой достаточна для хранения одного кад­ра). Содержимое буфера постоянно обновляется с частотой смены кадров — каждые 40 мс. По команде пользователя процесс обновления буфера прекраща­ется, и в нем фиксируется выбранное видеоизображение, которое переносится на магнитный носитель (например, HDD) в виде файла в одном из графических форматов.

Качество оцифровки зависит от ряда характеристик:

Глубина оцифровки — является характеристикой точности аналого-цифро­
вого преобразователя (АЦП). Ее значение определяет число цифровых от­
счетов между минимальным и максимальным значениями аналогового сиг­
нала. Принято считать, что при 8 бит оцифровки не происходит потери
видеоинформации. Для цветных изображений необходима оцифровка трех
составляющих (RGB), причем для получения 16,7 млн цветов необходимо
использовать 24-битную оцифровку. Такое же 24-битное задание цвета име­
ет место в качественных описаниях цветных изображений в виде графичес­
ких файлов.

Частота оцифровки (выборки) видеосигнала — определяет получаемое в
изображении разрешение. Название одного из существующих стандар­
тов — «квадратный пиксел» — означает, что ширина пиксела равна его
высоте. В телевидении отношение ширины изображения к его высоте
составляет 4:3. Именно этот стандарт гарантирует, что телевизионный круг
останется кругом, а не трансформируется в эллипс в соответствующем
цифровом изображении.

Емкость буферной памяти, необходимой для захвата полного телевизион­
ного кадра с разрешением 768 х 576, в реальном времени (за 40 мс), при фор­
мате записи как RGB-компонента 8:8:8 составляет 1296 Kb. Большинство со­
временных систем оцифровки видеоизображений могут отображать
полноэкранное видео.


1.6. Системы вывода 1.6.1. Фотонаборный автомат

Фотонаборный автомат — один из наиболее важных элементов в составе изда­тельской системы. Он осуществляет преобразование полос издания, представ­ленных в цифровом виде в компьютере, в материальную форму — негатив или позитив на фотопленке или фотобумаге. При подготовке цветных изданий на нем получают цветоделенные фотоформы полос издания. Именно по этим фото­формам в дальнейшем изготавливаются матрицы для типографской печати. Фо­тоформы содержат всю информацию о цветовых компонентах издания, форме, размере и структуре растра и, в конечном итоге, качество изготовления этих фотоформ определяет качество всего издания.

Во всех фотонаборных автоматах реализован один и тот же базовый прин­цип получения фотоформ: на фоточувствительный материал наносится растро­вое изображение путем экспонирования этого материала лазерным лучом. Далее этот материал проявляется химическими растворами в проявочной машине. Ис­пользуются два основных типа фотоматериалов: фототехническая прозрачная пленка (для последующего изготовления типографских матриц) и фототехни­ческая бумага (для изготовления пробных или контрольных форм). В силу того, что лазерный источник фотонаборного автомата имеет, как правило, узкий спектр излучаемого света, фототехнические материалы тоже имеют узкий диапазон чув­ствительности. Поэтому разные модели фотоавтоматов используют разные типы фотоматериалов. Наибольшее распространение в фотонаборном оборудовании получили лазерные источники (и, соответственно, фототехнические материалы) инфракрасного, видимого красного и гелий-неонового спектра излучения.

На качество цветоделенных фотоформ влияют следующие параметры фо­тонаборного аппарата:

• формат вывода;

• разрешающая способность;

• тип источника света;

• тип механизма протяжки пленки;

• линейность;

• методы растрирования.

Формат вывода определяет максимальный размер фотоформы, которую можно изготовить на фотонаборном автомате, и соответственно максимальный формат печатного издания, получаемого в итоге. Конечно, выведенную фотоав­томатом пленку можно увеличивать последовательной пересъемкой в репрока-мере, но это ведет к дополнительным расходам на фотоматериалы и химикаты, а также сказывается на качестве конечной продукции.


Для качественных цветоделенных работ необходима разрешающая способ­ность как минимум в 16 раз больше максимально используемой линиатуры по­лиграфического растра (рис. 1.6), т.е. определяется соотношением:


Разрешение (т / дюйм) =Линиатура (л / см) х 16 х 2,54


(1.2)


Что касается источников света, то этот вопрос достаточно сложный. Лазер с меньшей длиной волны обеспечивает более стабильную точку на пленке, легче фокусируется, при этом сильнее рассеивается в слое фотоматериала и требует более сложных механизмов управления. До недавнего времени применялись два наиболее распространенныхтипалазеров: недорогой инфракрасный полупровод­никовый лазер (длина волны 750 нм) и более дорогой, но обеспечивающий лучшее качество точки, красный гелий-неоновый лазер (длина волны 630 нм).

Для цветной печати очень важно качество совмещения цветоделенных форм, так как при его ухудшении возникают искажения цветов, разного рода гранич­ные эффекты, муар.

При общем базовом принципе работы фотонаборных автоматов есть ко­ренное отличие в способе его реализации, которое определяет деление по­добных устройств на два основных класса — автоматы барабанного типа и автоматы типа capstan. В устройствах первого типа лазерный луч экспониру­ет фотоматериал, неподвижно закрепленный на цилиндрической поверхно­сти. В устройствах типа capstan фотоматериал движется с постоянной скоро­стью, а лазерный луч сканирует поперек направления этого движения. Барабанные фотоавтоматы, как правило, обеспечивают более высокое каче­ство, чем устройства capstan.

Управление работой фотовыводных устройств осуществляется с компьютера и для обеспечения та­кого интерфейса необходим специализированный растровый процессор. Именно он определяет, в ка­ком объеме и с каким качеством будут реализова­ны технические свойства, заложенные в электрон­ную и механическую системы фотоавтомата.

Проявочные машины

Рис. 1.6. Соотношение величины растровой ячейки и разрешения фотонаборно­го автомата

Проявочные машины представляют собой автома­тические устройства для проявки полиграфических фотоформ. Технически эти аппараты выполнены в виде трех связанных емкостей для проявителя, фиксажа и воды, в которых поддерживается задан-


нал температура растворов, и через которые с заданной скоростью протягива­ется выведенная фотоформа. На выходе проявочной машины проявленная фо­тоформа сушится в специальной термокамере.

В современных проявочных машинах температурные установки для прояви­теля и фиксажа устанавливаются независимо, рециркуляция (обновление) раство­ров в процессе работы осуществляется автоматически. Помимо названных свойств, эти машины обладают сквозным контролем процесса проявки и полной обратной связью, дополнительными автоматическими системами очистки фотоматериалов от паров и микрокристаллов химических реактивов. Все эти достоинства совре­менных проявочных машин позволяют достигать высочайшего качества проявки, что напрямую влияет на качество конечной полиграфической продукции.

Принтеры

Основные типы принтеров.

Матричные принтеры. Процесс печати в таких принтерах осуществляется следующим образом: печатающая головка принтера содержит вертикальный ряд тонких металлических стержней (иголок). Головка движется вдоль печатаемой строки, а стержни в нужный момент ударяют по бумаге, через красящую ленту. Это и обеспечивает формирование на бумаге символов и изображений. В мат­ричных принтерах обычно применяются головки с 9-ю или 24-мя иголками. Каче­ство печати очень посредственное.

Матричные принтеры, некогда считавшиеся стандартным оборудованием, сейчас занимают более скромное место. Но, когда речь заходит об одновремен­ной печати нескольких экземпляров документа или скоростной выдаче больших объемов печатной продукции, этим устройствам по-прежнему нет равных. Этот метод также лучше других подходит для работы с некоторыми, неудобными для печати типами бумаги, например плотными карточками или банковскими (сбе­регательными) книжками. А построчно печатающие устройства представляют собой наиболее экономичные средства высокоскоростной печати писем на блан­ках для крупных предприятий и государственных учреждений.

Струйные принтеры. В этих принтерах изображение формируется микро­каплями специальных чернил, выдуваемых на бумагу с помощью сопел. Каче­ство печати струйных принтеров разное — от плохого, с видимыми полосами и тусклыми цветами, до очень хорошего, приближающегося в некоторых случаях к фотографическому, по крайней мере на специальной бумаге. Некоторые из струйных принтеров могут давать достаточно насыщенные цвета на прозрачных пленках, применяемых в современных технологиях обучения и презентациях.

Струйные принтеры могут служить и монохромными и цветными, но не все они просто переключаются между этими режимами. Принтеры делятся на две


Технологии произволе

группы в зависимости от числа заправляемых сразу красок. Принтеры, у кото­рых четыре цвета CMYK, могут переходить от монохромной печати к цветной в пределах одной страницы без перерыва в печати. В трехцветные CMY-принтеры устанавливается один картридж с краской (красками). Можно сделать его моно­хромным, вставив картридж с черной краской, или цветным, установив картридж с тремя красками. Это означает, что для перехода от монохромной печати к цвет­ной картридж необходимо сменить. Кроме того, черный цвет текста на цветной странице будет составным — из трех наложенных друг на друга цветов. Если крас­ки совместятся не совсем точно, то текст может выглядеть сероватым, а не чер­ным. Большинство современных струйных принтеров четырехцветные CMYK.

Принтеры с твердым красителем (принтеры с твердой восковой мастикой, с изменением фазы или распылением воска). Название таких принтеров в не­которой степени вводит в заблуждение. В них нет красителя в буквальном смыс­ле, и краситель не является твердым в момент печати. Краситель поставляется в виде твердого воскового блока, но перед началом печати принтер плавит его и распыляет через сопла, совсем как струйный.

Принтеры с твердым красителем, выпускавшиеся до 1995 г., были очень по­хожи на струйные, поскольку распыляли восковую мастику прямо на бумагу. В современных принтерах этого типа принят другой метод, при котором мастика напыляется на барабан, а затем переносится на бумагу, что во многом похоже на технологию лазерного принтера. Этот принцип настолько ускоряет печать, что делает принтер удобным как для монохромной, так и для цветной печати. Он решает также проблему, с которой эта техника постоянно сталкивалась при пе­чати на пленках. Капли жидкой мастики, наносимые на пленку, застывают в виде полусфер, создающих линзовый эффект, из-за чего принтер с твердым красите­лем плохо подходит для печати на пленках. Новая конструкция устраняет дан­ную проблему, так как при переносе с барабана на пленку капли мастики сплю­щиваются.

Обе разновидности принтеров с твердым красителем прекрасно передают цвета на бумаге, благодаря чему они являются хорошим выбором для печати графики и предметом внимания со стороны художников, которым нужно по­смотреть, как будет выглядеть результат их работы на специальных бумагах.

Принтеры с термовосковой печатью переносят мастику с ленты на бумагу. Сильной стороной этой технологии всегда была прекрасная цветопередача на графических изображениях, особенно, наносимых на пленку. При разрешении 300 dpi становятся заметными структуры псевдосмешения — эффект, вызван­ный наложением цветов. Но при разрешении 600 х 300 dpi некоторые из этих принтеров могут печатать сканированные фотографии с качеством, приближа­ющимся к фотографическому.

Сублимационные принтеры (принтеры с термопереносом красителя). Рабо­та таких принтеров во многом похожа на термический перенос воскоподобной


мастики, за исключением того, что ленты несут краситель, а не мастику. Сегод­ня это единственная из имеющихся технологий, которая обеспечивает фотогра­фическое качество печати. Здесь не видно структур псевдосмешения, посколь­ку сублимационные принтеры не смешивают цвета, а печатают по-настоящему плавные переходы тона.

Безрастровое отображение определяется как вывод, в котором ячейка пол­ностью заполнена цветом и тоном, ничего белого не остается. Сублимационные принтеры, выводящие непрерывный тон, дают иллюзию гладкого непрерывного изображения без использования полутоновой точки и базовых цветов. Непре­рывный тон ставит в соответствие каждому пикселю изображения точку на вы­водящем устройстве с коэффициентом 1:1, поэтому он также называется пря­мым цифровым выводом.

Основной недостаток сублимационных принтеров — это высокая стоимость печати. Также в них применяется особо плотная бумага, которая на вид и ощупь напоминает фотографическую. Но если решаемые задачи не критичны к бумаге и цене, сублимационные принтеры дадут наилучшее качество печати и фото, и графики как на бумаге, так и на пленке.

Принтеры с двумя режимами. Технологии термовосковой печати и субли­мации настолько похожи, что не трудно реализовать их обе в одном принтере. Принтеры с двумя режимами могут дать экономию, позволяя печатать черновые материалы и графики, не нуждающиеся в сублимационном качестве, в более де­шевом режиме термовосковой печати.

Слайд-принтеры предназначены для вывода цифровых изображений (в т.ч. полноцветных) на фотографическую пленку — слайд (обычно 35 мм). Слайд-принтеры представляют собой устройство в светонепроницаемом корпусе со встроенном фотоаппаратом, объектив которого направлен внутрь и сфокусиро­ван на экране небольшой электронно-лучевой трубки миниатюрного монохром­ного монитора или жидкокристаллического дисплея. Созданное на компьютере изображение экспонируется на фотопленку. При выводе полноцветного изоб­ражения используется тройное экспонирование фотопленки цветоделенными компьютером изображениями.

Лазерные принтеры. В лазерных принтерах используется электрографи­ческий принцип создания изображений (примерно такой же используется в ко­пировальных аппаратах). Этот процесс включает создание рельефа электроста­тического потенциала в слое полупроводника с последующей визуализацией этого рельефа с помощью частиц сухого порошка — тонера, наносимого на бумагу.

В механизме лазерных принтеров могут быть выделены три основных ком­понента:

• система подачи бумаги;

• лазерно-механическое устройство;

• контроллер.


Технологии произволе

Система подачи бумаги продвигает лист бумаги от входного лотка к лазер-но-механическому устройству, которое воспроизводит изображение в соответ­ствии с сигналами, полученными от контроллера.

Наиболее важной частью лазерного принтера является лазерномеханичес-кое устройство, состоящее из фотопроводящего цилиндра (печатающего бара­бана), полупроводникового лазера и прецизионной оптико-механической систе­мы, перемещающей луч.

В лазерном принтере текст и графические изображения регистрируются (печатаются) в результате электрофотографического процесса. При этом все необходимые действия в механизме принтера сосредоточены вокруг барабана — алюминиевого цилиндра, покрытого светочувствительным материалом. Особен­ностью этого покрытия является переход в проводящее состояние под воздей­ствием света. С точки зрения электрической проводимости, используемый све­точувствительный материал ведет себя в темноте подобно резине, а при освещении — подобно меди. В связи с этим, имеющиеся на поверхности электри­ческие заряды будут оставаться на ней, пока барабан находится в темноте. Если осветить барабан, светочувствительный слой отведет эти заряды на внутреннюю поверхность, где они рассеются на алюминиевой основе. Практически, это по­зволяет использовать направленное освещение для снятия электрических заря­дов с определенных участков поверхности барабана.

Получить изображение страницы на поверхности барабана и передать его на бумагу позволяют следующие процедуры:

• очистка барабана;

• зарядка барабана;

• экспонирование изображения на барабан;

• проявление изображения на барабане;

• передача изображения на бумагу;

• закрепление изображения на бумаге.

Схематическое изображение процесса лазерной печати на рис. 1.7 иллюст­рирует последовательность проведения перечисленных процедур в направлении движения часовой стрелки.

Чтобы ликвидировать заряды, оставшиеся от предыдущей страницы, вся повер­хность барабана очищается освещением специальной «гасящей» лампой. Оставши­еся частицы тонера удаляются механической щеткой.

Статический заряд однородно распределяется по всей поверхности барабана. Для этого барабан вращается в проволочном кольце, находящемся под высоким напряжени­ем. Отрицательный заряд с проволоки переходит (благодаря «коронному эффекту») на барабан (первичная корона), который находится в темноте. Поэтому светочувствитель­ный слой остается изолятором и сохраняет заряды на поверхности барабана.

Скрытое изображение на барабане создается избирательной ликвидацией зарядов с помощью лазерного луча. Можно представить лазерный луч в виде


карандаша, который пишет на заряженном барабане; различие между черным и белым, получающееся на бумаге, на стадии экспони­рования воспроизводится как различие между нали­чием и отсутствием заряда на поверхности барабана.

Рис. 1.7. Процесс лазерной печати

На стадии записи на ба­рабане создается электро­статическое поле, соответ­ствующее изображению, в котором черное и белое от­личается энергетическим потенциалом зарядов. На стадии проявления изобра­жения скрытое негативное

изображение «проявляется» аналогично соответствующему процессу в фото­графии. Черный тонер электростатически заряжен и удерживается только на площадках поверхности барабана с противоположным зарядом, отталкиваясь от других площадок. В результате на барабане возникает изображение битово­го массива страницы.

Черное изображение передается на бумагу путем создания на ней соответ­ствующего заряда. Вторичная корона, имеющая высокий потенциал, заряжает бумагу противоположно заряженности тонера. Поскольку используемый по­тенциал создает значительно более высокий, чем на барабане заряд, при контак­те бумаги с барабаном тонер переходит на бумагу.

Черное позитивное изображение, полученное на бумаге, сначала удержи­вается электростатическими силами. Затем это изображение закрепляется про­катыванием под давлением и нагревом. При температуре около 200 °С тонер вплавляется в бумагу. После выхода бумаги из принтера устройство готово для следующего цикла, начинающегося с очистки барабана.

Широко используются два метода создания скрытого изображения: «за­пись черного» и «запись белого». В обоих случаях лазерный луч используется для ликвидации зарядов на барабане.

В устройствах «запись черного» экспонируемые лазерным лучом площади притягивают тонер и становятся черными на выведенной бумаге, отсюда назва­ние — «запись черного». Если изображение на полученной в таком принтере странице не подверглось воздействию лазерного луча, она будет белой, посколь­ку заряженный барабан на всей поверхности только отталкивает тонер.


В устройствах «запись белого» площади, не подвергавшиеся воздействию лазерного луча, притягивают тонер и становятся черными. Лазерный луч лик­видирует все заряды на поверхности барабана, исключая места, которые дол­жны быть черными. Если изображение не подверглось воздействию лазерно­го луча, страница будет полностью черной, поскольку в этом случае заряженный барабан притягивает тонер, который покрывает всю неэкспони­рованную поверхность.

Как видно из рис. 1.8, форма записи изображений различна. Устройство с записью черного создает площадки, на которых тонер должен удерживаться с использованием круглых точек, поэтому знаки получаются жирными.

В конструкциях с записью белого создаются площадки, где не должен удержи­ваться тонер (тонер удерживается на оставшихся неэкспонированных площадках), поэтому знаки получаются тонкими, лазерный луч записывает белые площадки стра­ницы, оставляя «вырезанные» знаки.

В лазерных принтерах не обязательно использование лазерного луча. Для со­здания скрытого изображения на светочувствительной поверхности барабана мо­гут применяться другие подходящие по точности и скорости светоизлучающие ком­поненты, например, светодиодные матрицы, затворы на основе жидких кристаллов, электронно-лучевые трубки.



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 860; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.130.73 (0.061 с.)