Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сила давления жидкости на криволинейные поверхностиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Определение давления жидкости на цилиндрическую поверхность представляет собой частный случай общей задачи о давлении жидкости на криволинейные поверхности. Чтобы получить общее решение, возьмём сосуд произвольной формы и выделим его на стенке какую-либо произвольную поверхность S, ограниченную контуром AMBN. Будем искать составляющие полного давления на эту поверхность по координатным осям, выбрав, например, начало координат на свободной поверхности жидкости и расположив оси так, как это показано на чертеже. При этом ограничимся определением лишь одной составляющей Rx. Параллельной оси x, поскольку остальные составляющие можно найти аналогичным образом. Найдём проекцию поверхности S на некоторую плоскость NN, нормальную к оси x и расположенную между этой поверхностью и координатной плоскостью ZOY. Отметим, что указанную плоскость проекции NN, как и направление самой оси x, можно выбирать по-разному. На жидкость, заключённую в объёме между поверхностью S, плоскостью NN и поверхностью проектирующего цилиндра, образующие которого параллельны оси x, действуют следующие силы: тяжести (вес) Gx выделенного объёма жидкости; давления жидкости RFx на проекцию поверхности S на плоскость NN; давления на боковую поверхность указанного объема (их проекция на ось x равна нулю); реакции R со стороны поверхности S, равная по значению, но обратная по направлению искомой силе давления жидкости. Проектируя эти силы на ось x, имеем:
откуда для проекции силы реакции получаем
Аналогично находят выражения для проекции силы реакции и на другие координатные оси:
где - углы между направлением линии действия силы тяжести и осями координат x, y, z. Таким образом, получаем следующую общую теорему о давлении жидкости на криволинейную поверхность: проекция силы давления жидкости на криволинейную поверхность S на заданную ось x равна сумме проекций на эту ось веса жидкости, находящейся между поверхностью S, поверхностью проектирующего цилиндра и плоскостью проекций, нормальной к оси x, и силы давления жидкости на проекцию поверхности S на ту же плоскость проекции. Силу гидростатического давления на криволинейную поверхность определяют по формуле:
где - составляющие силы избыточного давления по соответствующим координатным осям. В случае цилиндрической криволинейной поверхности:
где и - горизонтальная и вертикальная составляющие силы . Горизонтальная составляющая избыточного давления равна силе давления на вертикальную проекцию криволинейной поверхности:
где - манометрическое давление на поверхности жидкости; - глубина погружения центра тяжести вертикальной проекции криволинейной поверхности; - площадь вертикальной проекции криволинейной поверхности. Если манометрическое давление на свободной поверхности жидкости равно нулю (), то
Вертикальная составляющая равна весу жидкости в объёме тела давления. Тело давления расположено между вертикальными плоскостями, проходящими через крайние образующие цилиндрической поверхности, самой цилиндрической поверхностью и свободной поверхностью жидкости или её продолжением. (рис. 1)
Если давление на свободной поверхности жидкости , то тело давления ограничивается сверху пьезометрической плоскостью, удалённой от свободной поверхности жидкости на расстояние Направление силы определяется тангенсом угла :
Если криволинейная поверхность не цилиндрическая, то горизонтальную составляющую определяют аналогично . Примеры и задачи Пример 2.1. Плотность и объем первой жидкости равны 1000 кг/м3 и 6 см3. Плотность и объем второй жидкости 800 кг/м3 и 4 см3. Определить плотность смеси этих жидкостей. Решение: По определению плотности масса первой и второй жидкости равны: Плотность смеси находим по определению: Ответ: плотность смеси равна 920 кг/м3 Пример 2.2. Проводятся гидравлические испытания водопровода длиной 5 км и диаметром 2 м. Необходимо повысить давление в нём до 4 МПа. Какой объём воды необходимо дополнительно закачать в водопровод? Коэффициенты объёмного сжатия принять равными 5 10-10 1/Па. Решение: Из определения коэффициента объёмного сжатия жидкости следует, что изменение объёма воды равно . Объём жидкости в трубе – это объём цилиндра диаметром D и длиной ℓ. Поэтому Ответ: необходимо закачать 31,4 м3 воды. Пример 2.3. Определить плотность воды при температуре 44 Сº, если при температуре 4 Сº плотность воды 1000 кг/м3. Коэффициент температурного расширения воды принять равными 4,8 10-4 1/Сº. Решение: Обозначим величины при температуре 4 Сº индексом 1, а при температуре плотность 44 Сº индексом 2. Тогда плотность жидкости при температуре 44 Сº равна: . Изменение объёма воды при изменении температуры найдём из определения коэффициента температурного расширения: . Тогда плотность воды будет равна: . Ответ: плотность воды при температуре 44 Сº равна 981 кг/м3. Пример 2.4. В баке компрессора воздух находится при давлении 0,2 МПа и температуре 20 Сº. В баке образовалось отверстие, через которое происходит истечение воздуха в атмосферу (pат = 0,1 МПа). Определить температуру вытекающего воздуха. Указание: процесс истечения считать адиабатическим (k = 1,5). Решение: Обозначим величины в баке компрессора индексом 1, а истекающего воздуха индексом 2. Запишем уравнения состояния и уравнение процесса: Из этих уравнений исключаем плотности: Откуда: . Тогда температура воздуха при истечении равна . Или Ответ: температура истекающего воздуха равна - 40. Пример 2.5. Вертикальная стенка длиной ℓ=3 м (в направлении, перпендикулярном плоскости чертежа), шириной b = 0,7 м и высотой Н0 = 2,5 м разделяет бассейн с водой на две части. В левой части поддерживается уровень воды H1 =2 м, в правой- H2 = 0,8 м.
Найти величину опрокидывающего момента, действующего на стенку, а также определить, будет ли стенка устойчива против опрокидывания, если плотность материала стенки ρ = 2500 кг/м3. Решение: Найдем силу давления воды на стенку слева. Так как на поверхности давление атмосферное, то пьезометрическая плоскость совпадает с поверхностью жидкости, . Стенка вертикальная, поэтому расстояние от линии уреза до центра тяжести равно глубине погружения центра тяжести ℓc1 = hc1 = H1/2. Момент инерции поверхности относительно линии, параллельной линии уреза и проходящей через центр тяжести равен . Тогда координата центра давления: . Точно также справа kH, M. Опрокидывающий момент, то есть момент сил давления жидкости относительно точки О (см. рис. 2.9), равен: Устойчивость против опрокидывания сообщает стенке момент ее силы тяжести относительно точки О, равный: Так как Mтяж > Mопр, то стенка устойчива. Пример 2.6.
Определить давление жидкости на плоские боковые стенки цилиндрического резервуара, если его диаметр D=3 м (рис. 1). Решение: Для этого сначала найдем силу давления Р (для избыточного давления). Давление в центре тяжести площади стенки p = r g h = 9,81×1000×15 = 1,47×104, откуда: P = pc w = pc p×d2/4 = 1,47×104×p×d2/4 = 1,03×105 Н. Пример 2.7.
Определить усилие U, необходимое для того, чтобы поднять клапан (рис. 2.11), если диаметр головки D = 0,5 м, диаметр цилиндрического ствола d = 0,3 м, высота головки а = 0,25 м и глубина погружения клапана h=1,25 м. Вес клапана G=29,4 H. Решение. Необходимое усилие U находим из условия предельного равновесия , где и - силы давления жидкости на верхнюю и нижнюю (кольцевую) поверхности головки клапана. Вычисляем последовательно: Искомое усилие Н. Пример 2.8.
Определить силу R давления жидкости на горизонтальное дно резервуара (внутреннее давление снизу вверх) в соответствии с рис. 3, если Па; d=2 м. Решение: Искомая сила R = p ω, где p - гидростатическое давление в центре тяжести площади ω (в точке М). По формуле:
Па, откуда
Пример 2.9. Определить величину и направление силы гидростатического давления воды на 1 м. ширины вальцового затвора диаметром D = 1,5 м. (рис. 2.13)
F l yд 0 Решение: Горизонтальная составляющая Вертикальная составляющая: Суммарная сила давления: Составляющая Px проходит на расстоянии yд от свободной поверхности Составляющая Pz проходит на расстоянии l = 0,4244r от линии 1-1, равном м. Равнодействующая P приложена в точке 0 под углом j к горизонту и проходит через центр круга. Стальная труба с внутренним диаметром D = 600 мм. работает под давлением р = 3 МПа. Найти: а) необходимую толщину стенок трубы, если допустимое напряжение для стали МПа; б) максимально допустимое давление при толщине стенки трубы мм. Ответ: а) 6 мм.; б) 2 МПа (20,4 кгс/см2). 3. Определить величину и направление силы давления воды на 1 м. ширины затвора (рис.3), если: а) R = 1 м.; Н = 2 м.; б) R = 2 м.; Н = 2,5 м.. Ответ: а) 22,9 кН (2,33 тс); ; б) 50,1 кН (5,12 тс); . Рис. 3 Задача 2.21 Найти силу давления воды на дно сосуда диаметром D = 1 м, если глубина H=0,7 м, вес поршня G = 300 Н, d=0,5 м. Ответ: 6,59 кН. Задача 2.32 Наклонный прямоугольный щит плотины шарнирно закреплен на оси О. При каком уровне воды Н щит опрокинется, если угол наклона щита a=60°, а расстояние от его нижней кромки до оси шарнира d=1,3 м. Вес щита не учитывать. Ответ: Н =3,38м. Задача 2.43 Определить силу давления жидкости на торцевую плоскую стенку горизонтальной цилиндрической цистерны диаметром d=2,4 м, заполненной бензином плотностью r=760кг/м3, если уровень бензина в горловине находится на расстоянии H=2,7 м от дна. Цистерна герметически закрыта и избыточное давление на поверхности жидкости составляет 40 кПа. Найти также положение центра тяжести стенки.. Ответ: P=231 кН, Dl= 0,052 м. Задача 2.54 Резервуар заполнен нефтью плотностью ρ=850 кг/м3 До высоты H=4 м. Избыточное давление на поверхности pн= 14,7 кПа. Определить реакции шарнира A и стяжного болта В крышки люка, если диаметр патрубка d =1м и его центр расположен на расстояниях H=1,5 м от дна резервуара, а=0,7 м и b= 0,8 м. Вес крышки не учитывать. Ответ: ra = 14.7 кН, r B = 13,4 кН.
|
||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 550; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.210.35 (0.007 с.) |