Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сила давления жидкости на криволинейные поверхности

Поиск

Определение давления жидкости на цилиндрическую поверхность представляет собой частный случай общей задачи о давлении жидкости на криволинейные поверхности. Чтобы получить общее решение, возьмём сосуд произвольной формы и выделим его на стенке какую-либо произвольную поверхность S, ограниченную контуром AMBN. Будем искать составляющие полного давления на эту поверхность по координатным осям, выбрав, например, начало координат на свободной поверхности жидкости и расположив оси так, как это показано на чертеже. При этом ограничимся определением лишь одной составляющей Rx. Параллельной оси x, поскольку остальные составляющие можно найти аналогичным образом. Найдём проекцию поверхности S на некоторую плоскость NN, нормальную к оси x и расположенную между этой поверхностью и координатной плоскостью ZOY. Отметим, что указанную плоскость проекции NN, как и направление самой оси x, можно выбирать по-разному. На жидкость, заключённую в объёме между поверхностью S, плоскостью NN и поверхностью проектирующего цилиндра, образующие которого параллельны оси x, действуют следующие силы: тяжести (вес) Gx выделенного объёма жидкости; давления жидкости RFx на проекцию поверхности S на плоскость NN; давления на боковую поверхность указанного объема (их проекция на ось x равна нулю); реакции R со стороны поверхности S, равная по значению, но обратная по направлению искомой силе давления жидкости. Проектируя эти силы на ось x, имеем:

(2.64)

 

откуда для проекции силы реакции получаем

(2.65)

 

Аналогично находят выражения для проекции силы реакции и на другие координатные оси:

 

(2.66)
(2.67)

 

где - углы между направлением линии действия силы тяжести и осями координат x, y, z.

Таким образом, получаем следующую общую теорему о давлении жидкости на криволинейную поверхность: проекция силы давления жидкости на криволинейную поверхность S на заданную ось x равна сумме проекций на эту ось веса жидкости, находящейся между поверхностью S, поверхностью проектирующего цилиндра и плоскостью проекций, нормальной к оси x, и силы давления жидкости на проекцию поверхности S на ту же плоскость проекции. Силу гидростатического давления на криволинейную поверхность определяют по формуле:

, (2.68)

 

где - составляющие силы избыточного давления по соответствующим координатным осям. В случае цилиндрической криволинейной поверхности:

, (2.69)

 

где и - горизонтальная и вертикальная составляющие силы . Горизонтальная составляющая избыточного давления равна силе давления на вертикальную проекцию криволинейной поверхности:

, (2.70)

 

где - манометрическое давление на поверхности жидкости; - глубина погружения центра тяжести вертикальной проекции криволинейной поверхности; - площадь вертикальной проекции криволинейной поверхности. Если манометрическое давление на свободной поверхности жидкости равно нулю (), то

. (2.71)

 

Вертикальная составляющая равна весу жидкости в объёме тела давления. Тело давления расположено между вертикальными плоскостями, проходящими через крайние образующие цилиндрической поверхности, самой цилиндрической поверхностью и свободной поверхностью жидкости или её продолжением. (рис. 1)

Рис. 2.82.8
 
 

Если давление на свободной поверхности жидкости , то тело давления ограничивается сверху пьезометрической плоскостью, удалённой от свободной поверхности жидкости на расстояние Направление силы определяется тангенсом угла :

. (1.8) (2.72)

 

Если криволинейная поверхность не цилиндрическая, то горизонтальную составляющую определяют аналогично .

Примеры и задачи

Пример 2.1.

Плотность и объем первой жидкости равны 1000 кг/м3 и 6 см3. Плотность и объем второй жидкости 800 кг/м3 и 4 см3. Определить плотность смеси этих жидкостей.

Решение:

По определению плотности масса первой и второй жидкости равны:

Плотность смеси находим по определению:

Ответ: плотность смеси равна 920 кг/м3

Пример 2.2.

Проводятся гидравлические испытания водопровода длиной 5 км и диаметром 2 м. Необходимо повысить давление в нём до 4 МПа. Какой объём воды необходимо дополнительно закачать в водопровод? Коэффициенты объёмного сжатия принять равными 5 10-10 1/Па.

Решение:

Из определения коэффициента объёмного сжатия жидкости следует, что изменение объёма воды равно . Объём жидкости в трубе – это объём цилиндра диаметром D и длиной ℓ. Поэтому

Ответ: необходимо закачать 31,4 м3 воды.

Пример 2.3.

Определить плотность воды при температуре 44 Сº, если при температуре 4 Сº плотность воды 1000 кг/м3. Коэффициент температурного расширения воды принять равными 4,8 10-4 1/Сº.

Решение:

Обозначим величины при температуре 4 Сº индексом 1, а при температуре плотность 44 Сº индексом 2. Тогда плотность жидкости при температуре 44 Сº равна:

.

Изменение объёма воды при изменении температуры найдём из определения коэффициента температурного расширения: .

Тогда плотность воды будет равна:

.

Ответ: плотность воды при температуре 44 Сº равна 981 кг/м3.

Пример 2.4.

В баке компрессора воздух находится при давлении 0,2 МПа и температуре 20 Сº. В баке образовалось отверстие, через которое происходит истечение воздуха в атмосферу (pат = 0,1 МПа). Определить температуру вытекающего воздуха.

Указание: процесс истечения считать адиабатическим (k = 1,5).

Решение:

Обозначим величины в баке компрессора индексом 1, а истекающего воздуха индексом 2. Запишем уравнения состояния и уравнение процесса:

Из этих уравнений исключаем плотности:

Откуда:

.

Тогда температура воздуха при истечении равна

.

Или

Ответ: температура истекающего воздуха равна - 40.

Пример 2.5.

Вертикальная стенка длиной ℓ=3 м (в направлении, перпендикулярном плоскости чертежа), шириной b = 0,7 м и высотой Н0 = 2,5 м разделяет бассейн с водой на две части. В левой части поддерживается уровень воды H1 =2 м, в правой- H2 = 0,8 м.

 

Рис. 2.92.9

 

Найти величину опрокидывающего момента, действующего на стенку, а также определить, будет ли стенка устойчива против опрокидывания, если плотность материала стенки ρ = 2500 кг/м3.

Решение:

Найдем силу давления воды на стенку слева. Так как на поверхности давление атмосферное, то пьезометрическая плоскость совпадает с поверхностью жидкости,

.

Стенка вертикальная, поэтому расстояние от линии уреза до центра тяжести равно глубине погружения центра тяжести ℓc1 = hc1 = H1/2. Момент инерции поверхности относительно линии, параллельной линии уреза и проходящей через центр тяжести равен .

Тогда координата центра давления:

.

Точно также справа

kH,

M.

Опрокидывающий момент, то есть момент сил давления жидкости относительно точки О (см. рис. 2.9), равен:

Устойчивость против опрокидывания сообщает стенке момент ее силы тяжести относительно точки О, равный:

Так как Mтяж > Mопр, то стенка устойчива.

Пример 2.6.

Рис. 2.102.10

Определить давление жидкости на плоские боковые стенки цилиндрического резервуара, если его диаметр D=3 м (рис. 1).

Решение:

Для этого сначала найдем силу давления Р (для избыточного давления).

Давление в центре тяжести площади стенки p = r g h = 9,81×1000×15 = 1,47×104, откуда:

P = pc w = pc p×d2/4 = 1,47×104×p×d2/4 = 1,03×105 Н.

Пример 2.7.

Рис. 2.112.11

Определить усилие U, необходимое для того, чтобы поднять клапан (рис. 2.11), если диаметр головки D = 0,5 м, диаметр цилиндрического ствола d = 0,3 м, высота головки а = 0,25 м и глубина погружения клапана h=1,25 м. Вес клапана G=29,4 H.

Решение. Необходимое усилие U находим из условия предельного равновесия

,

где и - силы давления жидкости на верхнюю и нижнюю (кольцевую)

поверхности головки клапана. Вычисляем последовательно:

Искомое усилие Н.

Пример 2.8.

Рис. 2.122.12

Определить силу R давления жидкости на горизонтальное дно резервуара (внутреннее давление снизу вверх) в соответствии с рис. 3, если Па; d=2 м.

Решение:

Искомая сила R = p ω, где p - гидростатическое давление в центре тяжести площади ω (в точке М).

По формуле:

 

Па,

откуда

 

 

Пример 2.9.

Определить величину и направление силы гидростатического давления воды на 1 м. ширины вальцового затвора диаметром D = 1,5 м. (рис. 2.13)

Рис. 2.132.13

 

F l yд

0

Решение:

Горизонтальная составляющая

       
   
 

Вертикальная составляющая:

Суммарная сила давления:

 
 

Составляющая Px проходит на расстоянии yд от свободной поверхности

Составляющая Pz проходит на расстоянии l = 0,4244r от линии 1-1, равном м.

Равнодействующая P приложена в точке 0 под углом j к горизонту и проходит через центр круга.


Задача 2.1

Стальная труба с внутренним диаметром D = 600 мм. работает под давлением р = 3 МПа. Найти: а) необходимую толщину стенок трубы, если допустимое напряжение для стали МПа; б) максимально допустимое давление при толщине стенки трубы мм. Ответ: а) 6 мм.; б) 2 МПа (20,4 кгс/см2). 3. Определить величину и направление силы давления воды на 1 м. ширины затвора (рис.3), если: а) R = 1 м.; Н = 2 м.; б) R = 2 м.; Н = 2,5 м.. Ответ: а) 22,9 кН (2,33 тс); ; б) 50,1 кН (5,12 тс); .

Рис. 3

Задача 2.21

Найти силу давления воды на дно сосуда диаметром D = 1 м, если глубина H=0,7 м, вес поршня G = 300 Н, d=0,5 м.

Ответ: 6,59 кН.

Задача 2.32

Наклонный прямоугольный щит плотины шарнирно закреплен на оси О. При каком уровне воды Н щит опрокинется, если угол наклона щита a=60°, а расстояние от его нижней кромки до оси шарнира d=1,3 м. Вес щита не учитывать.

Ответ: Н =3,38м.

Задача 2.43

Определить силу давления жидкости на торцевую плоскую стенку горизонтальной цилиндрической цистерны диаметром d=2,4 м, заполненной бензином плотностью r=760кг/м3, если уровень бензина в горловине находится на расстоянии H=2,7 м от дна. Цистерна герметически закрыта и избыточное давление на поверхности жидкости составляет 40 кПа. Найти также положение центра тяжести стенки..

Ответ: P=231 кН, Dl= 0,052 м.

Задача 2.54

Резервуар заполнен нефтью плотностью ρ=850 кг/м3 До высоты H=4 м. Избыточное давление на поверхности pн= 14,7 кПа. Определить реакции шарнира A и стяжного болта В крышки люка, если диаметр патрубка d =1м и его центр расположен на расстояниях H=1,5 м от дна резервуара, а=0,7 м и b= 0,8 м. Вес крышки не учитывать.

Ответ: ra = 14.7 кН, r B = 13,4 кН.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 550; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.210.35 (0.007 с.)