Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экспериментальные исследования коэффициента гидравлического сопротивленияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Экспериментальным определением зависимости падения давления от расхода жидкости в трубах и каналах начали заниматься более 200 лет тому назад. Почти каждый исследователь получал свой, отличный от других, закон сопротивления. Это было связано с тем, что в опытах различных авторов не соблюдался закон подобия, установленный О. Рейнольдсом в конце XIX века. Кроме того, не учитывалось, что в разных опытах стенки имели различную шероховатость. Первые систематические опыты для выяснения зависимости коэффициента гидравлического сопротивления λ от Re и шероховатости стенок труб были проделаны Никурадзе в конце 20-х - начале 30-х годов XX века в Геттингенском университете. Опыты производились на гладких латунных трубах и трубах с искусственной равномерной шероховатостью. Такая шероховатость получалась путем наклейки на стенки трубы песчинок определенного размера, для чего песок предварительно просеивался через специальные сита. Размер зерен песка принимался за размер зерен шероховатости ∆. Результаты опытов Никурадзе в координатах lg(l) – lg(100 Re)представлены на рис. 4.5, где е = k/D. Из этих опытов, проведенных в широком диапазоне значений числа Рейнольдса, следует, что существует 5 областей для коэффициента гидравлического сопротивления.
В первой области (прямая I) при Re < 2300 режим течения ламинарный и λ зависит от Re, но не зависит от k/D. Для этой области справедлива формула:
Во второй области имеет место переходный область от ламинарного режима движения к турбулентному режиму. Коэффициент λ возрастает и зависит только от Re. Третья область (прямая II) - так называемая область гидравлически гладких труб. Трубы с различной шероховатостью ведут себя как гладкие, то есть λ зависит только от Re. При этом границы области зависят от k/D. Чем больше k/D, тем уже эта область. При достаточно больших k/Dтретья область исчезает. Для этой области справедлива формула Блазиуса:
Четвертая область - область смешанного трения или область доквадратичного сопротивления. Коэффициент λ зависит как от Re, так и от k/D. В этой области существует достаточно много формул, но удобно пользоваться формулой Альтшуля:
Пятая область - область квадратичного трения. Коэффициент λ зависит только от k/D.
При выполнении вычислений на ЭВМ удобно использовать формулу Черчилля, справедливую во всем диапазоне чисел Рейнольдса, включая ламинарный режим течения:
Примеры и задачи Пример 4.1. Дано: Определить пределы изменения гидравлического радиуса К для канализационных самотечных трубопроводов, если диаметр их <1 изменяется от 150 до 3500 мм. Расчетное (наибольшее) наполнение: а=п/с1=0.6 для труб (1=150 мм; а=Ь/ё=0.8 для труб (1=3500 мм. Решение: Гидравлический радиус определяем по формуле: к = -X где Угол йиаходим из соотношения: Пример 4.2. 81п а=0.6-0.5-1=0.2; а=0.2 рад; ф=3. 14+2*0.2=3.54 рад; 4 6,2о 5С=3. 14*0. 15*3.54/6.28=0.266 м; К=0.011 1/0.266=0.0417 м. Для трубы (1=3500 мм: 81п а=0.8/0.5-1=0.6; а=0.63 рад; ф=3. 14+2*0.63=4.4 рад; + 3,52 (0,8 - 0,5)ДЩГ^] = 8Д2М2 Х=3. 14*3.5*4.4/6.28=7.7 м; К=8.22/7.7=1.07м. Таким образом, гидравлический радиус изменяется от 0,04 до 1,07 м. Пример 4.3. Определить напор, необходимый для пропуска расхода воды 0=0.01 м3/с через трубопровод диаметром (1=0,3 м и длиной 1=1200 м. Трубы стальные новые. Температура 20 градусов С. Решение: По таблице находим эквивалентную шероховатость новых стальных труб 1сэ=ОЛмм. Для найденной шероховатости и заданного диаметра определяем значение удельного сопротивления трубопровода при работе его в квадратичной области: Акв=0,504 с2/м6 Требуемый напор (в первом приближении) при условии работы трубопровода в квадратичной области пкв=Акв!д2=0.5*1200*0.072=Зм. Скорость движения воды в трубе ^ 40 4*0.07 v = ^ = со ж/2 3.14*0.32 Определяем по таблице поправку на неквадратность: х|/=1,1 и получаем необходимый напор:
Задача 4.1 Определить расход воды р в трубе диаметром д1=250мм, имеющей плавное сужение до диаметра &2~ 125мм, если показания пьезометров: до сужения: П1=50см; в сужении П2=30см. Температура воды 20 градусов С. Задача 4.2 Определить, на какую высоту поднимается вода в трубке,один конец которой присоединен к суженному сечению трубопровода, а другой конец опущен в воду. Расход воды в трубе р=0,025 м3/с, избыточное давление р!=49*103 Па, диаметры д1=100мм и д2=50мм. Задача 4.3 Выход воды из горизонтальной песколовки выполнен в виде сужения с плавно закругленными стенками. Ширина песколовки В=3м. Расход сточной воды <3=0,9 м3/с при скорости движения воды У1=0,3 м/с. Определить глубину воды в отводящем канале П2, если ширина его Ъ=0,8м.
Задача 4.4 Стальной новый водовод диаметром ё=0,25м с абсолютной эквивалентной шероховатостью 1со=0,0001м имеет пропускную способность (Зо==0,052м3/с. Вода в источнике слабоминерализованная, некорозионная. Исследования, проведенные через два года после начала эксплуатации, показали, что абсолютная шероховатость трубопровода возросла до К2=0,2мм. Требуется определить, какая будет пропускная способность водовода СЬз через 15 лет эксплуатации. Задача 4.5 Потеря давления в стальной водопроводной трубе диаметром с1=0,45м и длиной 1=3 000м, бывшей в эксплуатации в течение 12 лет, составляет р12=105Па при расходе воды СЬ2=0,2м3/с. Температура воды 20 градусов С. Требуется определить потери давления р2о в этой же трубе через 20 лет эксплуатации при расходе воды 02о=0,3 м /с. Задача 4.6 Определить величину повышения давления в стальной водопроводной трубе, если скорость воды в трубе до удара была у=1м/с, диаметр трубы ё=0,5м, и толщина стенок 8=0.0005.
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 558; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.142.42 (0.01 с.) |