Хромосомна теорія спадковості. Зчеплене успадкування. Кросинговер. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Хромосомна теорія спадковості. Зчеплене успадкування. Кросинговер.



Т. X. Морган проводив досліди з мухами-дрозофілами. Ці комахи є досить удалим об’єктом для генетичних досліджень, оскільки їх легко утримувати в лабораторних умовах. Дрозофіли мають високу плодючість, досить малу кількість хромосом (4 пари), у них дуже швидко відбувається зміна поколінь. Усі ці властивості дуже спрощують спостереження за результатами дослідів.

Схрещуючи дрозофіл сірих і чорних замість розщеплення 25% - 4 рази отримав - 41,5 % -2, 8,5 %-2. За результатами дослідів Морган висловив припущення, що гени, які містять спадкову інформацію про забарвлення тіла і форму крил, розташовані в одній хромосомі, але в профазі мейозу гомологічні хромосоми обмінюються ділянками. Таке явище дістало назву перехрест хромосом (кросинговер).Т. Х. Морган дійшов висновку, що будь-який живий організм має безліч ознак,а отже, безліч генів, проте кількість хромосом обмежена і невелика. Відповідно одна хромосома містить гени багатьох ознак. Гени в хромосомі розташовані лінійно. І саме завдяки тому, що під час процесу поділу хромосоми розходяться у гамети цілими, не дроблячись, ознаки, гени яких розташовуються в одній хромосомі, будуть успадковуватися разом, тобто зчеплено.

Зчеплене успадкування — успадкування ознак, гени яких розташовані в одній хромосомі.

Отже, геноми складаються з груп зчеплених генів, або просто груп зчеплення, причому кількість груп зчеплення зазвичай відповідає кількості хромосомних пар.

У дрозофіли, яка має 4 пари хромосом, установлено 4 групи зчеплення, у людини — 23 пари і відповідно 23 групи зчеплення.

Відповідно до висновку Моргана, гени зчеплені тоді, коли локалізовані на одній хромосомній парі. Якщо припустити, що хромосоми залишаються неконтактними при входженні у гамети, то локалізовані на них гени завжди успадковуються разом.

У цьому випадку можна говорити про їхнє повне зчеплення. Однак іноді можна побачити, що повного зчеплення генів не сталося, оскільки відбувається формування гамет не тільки двох батьківських типів, але і гамет рекомбінантних типів (унаслідок рекомбінації генів). Про відсутність повного зчеплення свідчать дані, що отримав Морган під час досліду з дрозофілами.

Кросинговер — перехрещення, взаємний обмін ділянками парних (гомологічних) хромосом у процесі клітинного поділу. Кросинговер відбувається в результаті розривуі поєднання в новому порядку ниток хромосом — хроматид. Кросинговер починається зі спарювання гомологічних хромосом і призводить до перерозподілу (рекомбінації) зчеплених генів. Кросинговер переважно відбувається в профазі першого ділення статевих клітин (пригадайте процес мейозу), коли їхні хромосоми представлені чотирма нитками. У місці перехрещення утворюється характерна фігура перехрещених хромосом — хіазма. Відкриття Т. Х. Моргана дозволило довести лінійне розміщення генів у хромосомах і розробити метод установлення їхнього взаєморозташування. Це дало початок побудові генетичних карт хромосом організмів.

У природі переважає неповне зчеплення, зумовлене перехрестом гомологічних хромосом і рекомбінацією генів.

Кросинговер призводить до нового поєднання генів, що спричиняє зміну фенотипу. Окрім того, він разом із мутаціями є найважливішим механізмом, що забезпечує комбінативну мінливість, а отже, є одним із головних чинників еволюції.

Завдяки кросинговеру з’являються нащадки з новим сполученням ознак — кросоверні особини, або рекомбінанти. Порядок зчеплення домінантних і рецесивних алелей визначається структурою генотипу. Структура генотипу дигетерозиготи (AaBb) може бути різною:

AB/ab; aB/Ab,

тобто, в одній хромосомі містяться два домінантні алелі, в іншій — два рецесивні (або в кожному хромосомному гомологу присутній один домінантний і один рецесивний алелі).

Хромосоми та гамети, у яких зберігається вихідне зчеплення алелів, називаються некросоверними, а хромосоми та гамети, у яких кросинговер змінив положення генів, називаються кросоверними. Кросинговер відбувається не завжди, тому кількість кросоверних особин є значно меншою, ніж кількість основних особин (некросоверних).

За частотою кросинговеру можна визначати відстань між генами у хромосоміі складати хромосомні карти. Чим більшою є відстань між генами у хромосомі, тим менша сила зчеплення між ними і тим більша ймовірність виникнення кросинговеру, тобто частота кросинговеру залежить обернено пропорційно від відстані між генами, яка виражається у відсотках кросинговеру або морганідах (на честь Т. Моргана). Одна морганіда — це відстань між двома генами, при якій кросинговер відбувається у 1 % гамет. Відстань між генами у відсотках визначають за формулою:

% кросинговеру = (кількість кросоверних особин / загальна кількість особин) ×100 %

Хромосомна теорія спадковості — це теорія, згідно з якою фактори спадковості (гени) містяться в хромосомах, розміщені послідовно, у певному визначеному місці (локусі); гени однієї хромосоми успадковуються разом (зчеплені), різних хромосом — незалежно.

Хромосомну теорію спадковості сформулював Т. Х. Морган за результатами своїх досліджень. Основні положення хромосомної теорії спадковості:

• гени розташовані в хромосомах у лінійному порядку;

• різні хромосоми мають неоднакові набори генів, тобто кожна з негомологічних хромосом має свій унікальний набір генів;

• кожен ген займає у хромосомі певну ділянку; алельні гени займають

у гомологічних хромосомах однакові ділянки;

• усі гени однієї хромосоми утворюють групу зчеплення, завдяки чому деякі ознаки успадковуються зчеплено; сила зчеплення між двома генами, розташованими в одній хромосомі, обернено пропорційна відстані між ними;

• зчеплення між генами однієї групи порушується внаслідок обміну ділянками гомологічних хромосом у профазі першого мейотичного поділу (процес кросинговеру);

• кожен біологічний вид характеризується певним набором хромосом (каріотипом) — кількістю та особливостями будови окремих хромосом.

 

89. Шляхи проникнення речовин у клітини: проникність зовнішньої мембрани, фаго- і піноцитоз. і зошит

Проникність біологічних мембран — здатність біологічних мембран пропускати в клітину або з неї молекули різних речовин та іони. Має велике значення в багатьох процесах життєдіяльності клітини, зокрема в підтриманні гомеостазу, осморегуляції, в проведенні імпульсу нервового тощо.

МЕМБРÁННИЙ ТРÁНСПОРТ (лат. transporto — переношу, перевожу, переміщаю) — перенесення різноманітних речовин через плазматичну мембрану (див. Мембрана біологічна). Механізм транспорту речовин до клітини та з неї залежить від розмірів частинок, що транспортуються. Малі молекули та іони проходять крізь мембрани шляхом пасивного чи активного транспорту. Перенесення макромолекул та великих частинок здійснюється за рахунок ендоцитозу та екзоцитозу.

Пасивний транспорт відбувається мимовільно без затрати енергії шляхом дифузії, осмосу та полегшеної дифузії. Дифузія — це транспорт молекул та іонів через мембрану з ділянки з високою концентрацією до ділянки з низькою концентрацією, тобто речовини надходять за градієнтом концентрації. Дифузія може бути простою та полегшеною. Якщо речовини добре розчинні в ліпідах, то вони проникають до клітини шляхом простої дифузії. Напр. оксиген, потрібний клітині при диханні, та вуглекислий газ у розчині швидко дифундують крізь мембрани. Таким способом проникають до клітини також деякі фармацевтичні препарати, які є ліпідорозчинними. Вода також здатна проходити крізь мембранні пори, що утворені білками, і переносити молекули та іони речовин, які в ній розчинені. Дифузію води крізь напівпроникну мембрану називають осмосом. Вода переходить з ділянки з низькою концентрацією солей до ділянки, де їхня концентрація вища. Тиск на мембрану, що виникає при цьому, називають осмотичним. Усі живі клітини здатні регулювати осмотичний тиск, змінюючи концентрацію речовин поза клітиною та всередині клітини. Речовини, які не є розчинними у ліпідах, транспортуються через іонні канали, утворені в мембрані білками, чи за допомогою білків-переносників. Це полегшена дифузія, шляхом якої, напр. здійснюється надходження глюкози до еритроцитів. Серед систем пасивного транспорту важливу роль відіграють іонні канали, які забезпечують проникність мембрани для Na+, K+, Ca2+. Na+-канали активуються вератрадином, батрахотоксином, блокуються амілоридом, тріамтереном; K+-канали блокуються місцевими анестетиками (лідокаїном, дикаїном), деякими протисудомними (дифеніл, карбамазепін, вальпроати, фенобарбітал та ін.) і протиаритмічними засобами (аміодарон); Ca2+-канали чутливі до цілої низки хімічних речовин, зокрема верапамілу, дилтіазему, ніфедипіну та інших похідних дигідропіридинів. Трансмембранний обмін (антипорт) чи односпрямований транспорт (симпорт) іонів здійснюється спеціальними білками-переносниками. Система односпрямованого транспорту (котранспорту) представлена (Na++K++Cl–)-переносником, що є чутливим до дії діуретиків (фуросеміду, амілориду, туметаніду). Виключення або різка зміна властивостей переносників і каналів лежить в основі дії багатьох токсичних і фармацевтичних речовин. Деякі речовини — іонофори, до яких належать різні антибіотики (валіноміцин, амфотерицин В, нонактин, енніатини, аламетицин та ін.), синтетичні циклополіефіри самостійно здатні утворювати канали у ліпідному бішарі мембрани. Дія деяких ЛП заснована на зміні властивостей каналів і переносників, що дозволяє регулювати транспорт речовин у клітинах і організмі в цілому.

Активний транспорт речовин крізь мембрану здійснюється проти градієнта їхньої концентрації із затратою енергії АТФ та за участю спеціальних мембранних білків — транспортних АТФаз, які також називаються іонними насосами. Найбільш поширеними в клітині тварин є Н+-АТФаза, Na+,K+-АТФаза і Са2+-АТФаза, що являють собою цілі мембранні комплекси із складною структурою. Функціональне значення біологічних насосів полягає у підтримці всередині клітини постійного іонного складу. Na+,K+-АТФаза сприяє виведенню Na+ з клітини та надходженню К+ до клітини за допомогою енергії АТФ і є прикладом антипортного транспорту. Із впливом на натрієвий насос пов’язаний механізм дії деяких фармацевтичних препаратів. Так, напр. серцеві глікозиди (дигоксин, уабаїн, строфантин К) пригнічують Na+,K+-АТФазу; деякі діуретики (тіазиди) інгібують активний транспорт Na+ та/або Cl– в епітелії канальців нирок; омепразол знижує кислотність шлункового соку, незворотно пригнічуючи протонний насос Н+-АТФазу парієтальних клітин шлунка. Са2+-АТФаза високочутлива до дії різноманітних тіолових отрут та ін. Крім вищенаведених видів активного транспорту, виділяють специфічні механізми переміщення речовин, пов’язані з порушенням цілісності мембрани, ендоцитоз та екзоцитоз. При ендоцитозі плазматична мембрана утворює вирости, які потім перетворюються на внутрішньоклітинні пухирці, що містять захоплений клітиною матеріал. Ці процеси відбуваються із витратою енергії АТФ. Розрізняють два види ендоцитозу: фагоцитоз і піноцитоз. Фагоцитоз (грец. phagos — пожирати, cytos — клітина) — це захоплення і поглинання клітиною великих часток (іноді цілих клітин та їхніх частин). Ендоцитоз рідини та розчинених в ній речовин називається піноцитозом (грец. pyno — пити, cytos — клітина). Шляхом ендоцитозу, напр. відбувається всмоктування жиру клітинами кишкового епітелію. Екзоцитоз — це процес виведення з клітини різноманітних речовин крізь мембрану, фактично зворотний ендоцитозу механізм. Шляхом екзоцитозу вивільнюються гормони, жирові краплини, а також медіатори в синапсах при збудженні.

Таким чином, знання про особливості М.т. є дуже важливими для фармації, оскільки визначають не лише шляхи проникнення всіх фармацевтичних препаратів до певних клітин, але й безпосередню дію багатьох з них.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 367; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.200.66 (0.008 с.)