Уравнение кинетики реакций 1-го, 2-го и нулевого .порядка. Период полупревращений. Молекулярность реакции. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение кинетики реакций 1-го, 2-го и нулевого .порядка. Период полупревращений. Молекулярность реакции.



 

Порядок и молекулярность простых химических реакций

В главном кинетическом уравнении химической реакции

аA + bВ + … →

В = k · · · …

а, b, … – это постоянные, не зависящие от концентрации вещества числа, называемые показателями порядка реакции, соответственно, по реагентам А, В, Их сумма (a + b +…= n) называется суммарным или общим порядком реакции.

Порядок реакции по каждому из реагентов (или частный порядок реакции) совпадает с его стехиометрическим коэффициентом в химическом уравнении только для простых реакций, протекающих в одну стадию. При этом в элементарном акте такой реакции (соударении) принимают участие и претерпевают изменения не более трёх частиц: молекул, ионов либо радикалов. В соответствии с этим различают мономолекулярные, бимолекулярные и тримолекулярные реакции (последние встречаются крайне редко).

В элементарном акте мономолекулярной реакции превращению подвергается одна частица, а в качестве продукта могут образоваться не только одна, но и две другие частицы (в некоторых случаях три и больше). Схематически это можно представить следующим образом:

А → В; А → 2В; А → В + С; А → В + С + D.

Кинетическое уравнение таких реакций выглядит так: К = k · CA.

Это уравнение реакции первого порядка (причём частный и общий порядок в нём совпадают и равны 1.

В элементарном акте бимолекулярной реакции превращению подвергаются две (одинаковые либо разные) частицы, с образованием одной и более частиц продуктов:

2А → С; 2А → С + В; А + В → С + D;

А + В → С; А + В → С + D + F

Кинетическое уравнение таких реакций в зависимости от вида исходных частиц выглядит следующим образом:

1) 1 = k · (если обе исходные частицы одинаковые);

2) 2 = k · CA · CB (если частицы реагентов разные по своей природе).

В обоих случаях общий порядок реакции равен 2. Причём для реакций первого типа он совпадает с частным порядком реакции по реагенту А. Для реакций второго типа частный порядок реакции по каждому из реагентов равен 1.Бимолекулярные реакции являются наиболее распространёнными, протекают, как правило, в газовой или жидкой фазе и могут принадлежать к самому разному типу,

например:

H2 + I2 = 2HI

CO + Cl2 = COCl2

К тримолекулярным относятся простые реакции, в элементарном акте которых сталкиваются и претерпевают изменения три частицы.

В зависимости от природы этих частиц (т.е. одинаковые они или разные) кинетическое уравнение такой реакции может иметь три разных вида:

В = k · (все три исходные частицы абсолютно одинаковые)

= k · · CB (одинаковые только две исходные частицы)

= k · CA · CB · CC (все три исходные частицы разные).

Общий порядок реакции в каждом из трёх случаев равен 3 и складывается из суммы частных порядков по каждому из реагентов. Тримолекулярные реакции являются очень редкими и поэтому практического значения не имеют.

Время (период) полупревращения – время, необходимое для хим. превращения половины начального кол-ва компонента.

Существует несколько способов классификации комплексных соединений, основанных на разных признаках. Наиболее распространённой является классификация по природе лигандов. В зависимости от природы лигандов различают:

аммиакаты (лиганды – молекулы NH3): [Cu(NH3)4]SO4; [Co(NH3)6]Cl3; [Pt(NH3)6]Cl4.

Если роль лигандов выполняют молекулы аминов: этилендиамин – NH2CH2CH2NH2 (обозначаемый как En), метиламин – CH3NH2, этиламин – C2H5NH2 и др. комплексы называют аминатами;

аквакомплексы (лиганды – молекулы Н2О): [Cr(H2O)6]Cl3; [Al(H2O)6]Cl3; [Cu(H2O)4](NO3)2. В кристаллическом состоянии некоторые из аквакомплексов удерживают кристаллизационную воду: [Cu(H2O)4]SO4 ∙ H2O. Кристаллизационная вода не входит в состав внутренней сферы, она связана менее прочно, чем координированная, и легче отщепляется при нагревании;

ацидокомплексы (лиганды – анионы различных кислот). К ним относятся:

– комплексы типа двойных солей: K2[PtCl4], K4[Fe(CN)6], которые можно представить как продукты сочетания двух солей: PtCl2 ∙ 2KCl, Fe(CN)2 ∙ 4KCN;

– комплексные кислоты: H2[SiF6];

– гидроксокомплексы (лиганды – ионы ОН–): Na2[Sn(OH)4], Na2[Sn(OH)6];

переходные ряды комплексов. Включают комплексы с различными по природе лигандами. Запишем переходный ряд между аммиакатами и ацидокомплексами платины (II): [Pt(NH3)4]Cl2; [Pt(NH3)3Cl]Cl; [Pt(NH3)2Cl2]; K[Pt(NH3)Cl3]; K2[PtCl4];

циклические или хелатные комплексные соединения. Содержат би- или полидентатные лиганды, связанные с центральным атомом несколькими связями. Примерами могут служить оксалатный комплекс железа (III) – [Fe(C2O4)3]3– и этилендиаминовый комплекс платины (IV) – [PtEn3]4+:

В группу хелатов входят и внутрикомплексные соединения, в которых центральный атом, включаясь в состав цикла, образует ковалентные связи с лигандами разными способами: донорно-акцепторным и за счёт неспаренных атомных электронов. В организме такие комплексы характерны для ионов Cu или Fe с аминокислотами, например, меди с глицином в глицинате меди

сэндвичевые комплексы. К ним относятся дибензолхром – Cr(C6H6)2, ферроцен – Fe(C5H5)2 и другие. Это открытая в последнее время группа комплексных соединений с аномально высокой растворяющей способностью, за что они получили название краун-эфиров. Отличаются многоцентровыми, делокализованными связями комплексообразователя с лигандами.

Перечисленные комплексные соединения относятся к одноядерным, содержащим один центральный атом. Помимо них существуют полиядерные, в структуре которых одновременно присутствуют два или несколько центральных атома-комплексообразователя. К полиядерным комплексным соединениям относятся:

– комплексы с мостиковыми лигандами, где каждые два центральных атома соединены одним, двумя или тремя лигандами одновременно: [Sb2F7]– [Al2Cl6] [Co2(OH)2(NH3)8]4+

– кластерные соединения, в которых центральные атомы связаны между собой непосредственно: [(CO)5Mn – Mn(CO)5] [Re2H2Cl8]2–

– изополисоединения – полиядерные соединения с комплексными анионами, в которых комплексообразователями выступают атомы одного и того же элемента, а в качестве лигандов (в том числе и мостиковых) – оксид-ионы О2–. Н4Р2О7, K2Cr2O7 и др., с пространственным расположением атомов:

– гетерополисоединения – полиядерные соединения, в комплексных ионах которых содержатся центральные атомы разных элементов, а в качестве лигандов (в том числе и мостиковых) выступают оксид-ионы О2–.Н4[GeMo12O40], H3[PW12O40], H5[BMo12O40].

Названия комплексных соединений составляются по определенным правилам. Согласно рекомендаций IUPAC, вначале указывают состав внутренней координационной сферы. Во внутренней сфере в первую очередь называют анионы, прибавляя к их латинскому названию окончание «о». Например: Cl– - хлоро, CN– – циано, SO32– – сульфито, Н– – гидридо, ОН– – гидроксо и т.д. Далее называют нейтральные молекулы и, прежде всего, молекулы аммиака и его производные. Причём для координированного аммиака используют тривиальный термин – аммин, для воды – аква, для СО – карбонил, для NO – нитрозил. Число лигандов указывают греческими числительными: 1 – моно (часто не приводится), 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса.

Затем называют комплексообразователь. Если центральный атом формирует анионный комплекс, то употребляют латинское название элемента, прибавляя к корню окончание «ат», с указанием в скобках степени его окисленности. Если центральный атом входит в состав катиона, используют русское название элемента и в скобках указывают его степень окисленности. В случае неэлектролитов степень окисленности центрального атома не отмечается, так как она вытекает, исходя из электронейтральности комплекса.

После названия внутренней сферы называют внешнюю: кислотные остатки или катионы. Число кислотных остатков, а также катионов определяется валентностью комплексного иона и в названии не отображается. Катионы внешней сферы называются в родительном падеже.

Металлофермент - Фермент, имеющий в своем составе ионы металлов – тирозиназа (ион меди), карбоангидраза и карбоксипептидаза (цинк), ксантиноксидаза (молибден), белки нитрогеназной системы азотфиксирующих бактерий (железо, молибден) и др.Металлоферменты, или металлоэнзимы — общее собирательное название класса ферментов, для функционирования которых необходимо присутствие катионов тех или иных металлов. Катион металла при этом обеспечивает правильную пространственную конфигурацию активного центра металлофермента.Примерами металлоферментов являются селен-зависимая монодейодиназа, конвертирующая тироксин в трийодтиронин, или железо-зависимые тканевые дыхательные ферменты.Помимо принадлежности к классу ферментов, металлоферменты принадлежат также к обширному классу металлопротеинов — белков (не обязательно ферментов), в состав которых входят катионы металлов.

Коллигативные свойства разбавленных растворов электролитов. Изотонический коэффициент Вант-Гоффа, его физический смысл. Связь между изотоническим коэффициентом Вант-Гоффа и степенью диссоциации слабых электролитов.

При диссоциации электролитов в растворе появляется больше частиц за счет образующихся ионов. С увеличением общего числа частиц увеличиваются и коллигативные свойства растворов. Для использования полученных формул для расчета коллигативных свойств разбавленных растворов электролитов Вант-Г'офф ввел поправочный коэффициент или изотонический коэфф Вант-Гоффа i:

i = Росм(э)/Росм =?Р(э)/?Р =?tзам/кип(э)/?tзам/кип

где Росм(э),?Р(э),?tз(э),?tк (э) — экспериментально определенные осмотическое давление, понижение давления насыщенного пара растворителя над раствором, понижение температуры замерзания и повышение температуры кипения растворов электролитов, соответственно; а Росм,?Р.?tзам/кип — те же теоретически рассчитанные величины для растворов той же концентрации неэлектролитов. Поэтому, формулы для расчета коллигативных свойств разбавленных растворов электролитов принимают следующий вид:

Росм (э) = iCRT;?Р(э) = iР0Х;?tз.(э) = iKCm;?tK (э) = iECm

Для растворов электролитов значения изотонического коэффициента i > 1, для неэлектролитов i = 1. Изотонический коэффициент показывает, во сколько раз число частиц в разбавленном растворе электролита больше числа молекул неэлектролита при той же молярной концентрации или моляльности.

Для характеристики диссоциации слабых электролитов пользуются степенью диссоциации?. Между а и i существует зависимость:?= i-1/n-1 где п — число ионов, на которые распадается электролит

 



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 514; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.229.253 (0.012 с.)