Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Информационные технологии Трендового анализаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель: изучить технологию проведения трендового анализа на основе статистических данных с помощью MS Excel Теоретическое введение Excel имеет специальный аппарат для графического анализа моделей, в том числе построения аппроксимационных зависимостей (линий тренда P(x)) по данной таблице { xi, yi }, которые приближенно отражают функциональную связь y=f(x). Линии тренда обычно используются в задачах прогнозирования. Такие задачи решают с помощью методов регрессионного анализа. С помощью регрессионного анализа можно показать тенденцию изменения рядов данных, экстраполировать их (то есть продолжить линию тренда вперед или назад за пределы известных данных). Можно также построить линию скользящего среднего, которая сглаживает случайные флуктуации, яснее демонстрирует модель и прослеживает тенденцию изменения данных. Линиями тренда можно дополнить ряды данных, представленные на линейчатых диаграммах, гистограммах, графиках, биржевых, точечных и пузырьковых диаграммах. Нельзя дополнить линиями тренда ряды данных на объемных, лепестковых, круговых и кольцевых диаграммах. Excel позволяет выбрать один из пяти типов линии тренда – линейный, логарифмический, экспоненциальный, степенной или полиномиальный (2...6 степени) и проверить (по различным критериям), какой из типов лучше всего подходит в данной ситуации. Критерием может служить или критерий R2 (коэффициент детерминации), автоматическое вычисление которого встроено в диалоговое окно Линия тренда, или квадратичное отклонение обычно используемое в методе наименьших квадратов при аппроксимации табличных функций. Чем меньше квадратичное отклонение, тем лучше линия тренда аппроксимирует ряд данных. Или, чем ближе коэффициент детерминации к единице, тем лучше тренд.
2.2.Задания для самостоятельной работы Задание 1. Используя статистические данные по численности населения России (таблица 3.1), построить линейный график ЧислСтат (Год). Выделив линию графика, построить различные линии тренда, выражающие зависимость численности населения от времени: Вставка | Линия тренда (или, наведя курсор на линию графика, щелкнуть правой клавишей мыши; в появившемся контекстно-зависимом меню выбрать Добавить линию тренда).
Таблица 2.1. Население России
Проверить линейную, полиномиальную (n =2), экспоненциальную, степенную линии: Тип | Построение линии тренда (рис. 2.1). Для каждого тренда: а) выдать аналитическую зависимость Численность (Год): Параметры | Показывать уравнение на диаграмме (рис. 2.2); б) найти погрешность С–Т (разницу между статистической и трендовой численностью); в) рассчитать квадратичное отклонение Si, используя функцию СУММКВ. Сравнить эти отклонения и по минимальному Si оценить численность населения в 2000 году. Рис. 2.1. Диалоговое окно Линия тренда/Тип Рис. 2.2. Диалоговое окно Линия тренда/Параметры Задание 2. Используя новое значение численности России в 1998 году – 146,2 млн. чел., уточнить экстраполяцию, используя только данные 90-х годов. Проанализировать полученные результаты. Задание 3. По заданной таблице 3.2 построить линии полиномиального тренда, наилучшим образом (по максимальному значению критерия детерминации R2) описывающие дневную температуру в г. Томске в разные месяцы 2007-2009 гг. Определить среднюю температуру месяца и отклонение от нее максимальной и минимальной температуры в процентах. Вычислить коэффициент корреляции температуры для одних и тех же месяцев двух разных лет. Сделать выводы. Коэффициент корреляции используется для определения наличия взаимосвязи между двумя различными рядами данных Xi, Yi, i = 1... n и имеет вид: О хорошей корреляции говорят значения К, по модулю близкие к единице. Знак «+» соответствует прямой взаимосвязи, знак «-» ― обратной. Вычисление этой формулы встроено в Excel (функция КОРРЕЛ).
Таблица 2.2. Дневная температура в г. Томске в 2007-2009 гг.
Продолжение таблицы 2.2
Продолжение таблицы 2.2
2.3. Контрольные вопросы 1. Что такое линия тренда? 2. Для решения каких задач обычно используются линии тренда? 3. Перечислите типы линий тренда. 4. Что такое коэффициент детерминации? 5. Что такое квадратичное отклонение? 6. Опишите параметры диалогового окна Линия тренда/Параметры. Домашнее Задание №3.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 644; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.205.114 (0.009 с.) |