Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вопрос 8. Статистическое решение и вероятность ошибки.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Уровень значимости - это вероятность отклонения нулевой гипотезы, в то время как она верна. Ошибка, состоящая в том, что мы отклонили нулевую гипотезу, в то время как она верна, называется ошибкой 1 рода. Вероятность такой ошибки обычно обозначается как а. В сущности, мы должны были бы указывать в скобках не р<0,05 или р<0,01, а а<0,05 или <Х<0,01. Если вероятность ошибки - это а, то вероятность правильного решения: 1—а. Чем меньше а, тем больше вероятность правильного решения. Исторически сложилось так, что в психологии принято считать низшим уровнем статистической значимости 5%-ый уровень (р<0,05): достаточным - 1%-ый уровень (р^О.01) и высшим 0,1% -ый уровень (р<0,001), поэтому в таблицах критических значений обычно приводятся значения критериев, соответствующих уровням статистической значимости р<0,05 и р<0,01, иногда - р<0,001. Для некоторых критериев в таблицах указан точный уровень значимости их разных эмпирических значений. Например, для ф*=1,56 р=0,06. До тех пор, однако, пока уровень статистической значимости не достигнет р=0,05, мы еще не имеем права отклонить нулевую гипотезу. Правило отклонения HQ и принятия Hi Если эмпирическое значение критерия равняется критическому значению, соответствующему р^0,05 или превышает его, то HQ отклоняется, но мы еще не можем определенно принять W\. Если эмпирическое значение критерия равняется критическому значению, соответствующему р<0,01 или превышает его, то HQ отклоняется и принимается Н^. Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения. Для облегчения процесса принятия решения можно всякий раз вычерчивать "ось значимости". Критические значения критерия обозначены как Q0,05 и Q0,01> эмпирическое значение критерия как Qэмп. Оно заключено в эллипс. Вправо от критического значения Q0,01 простирается "зона значимости" - сюда попадают эмпирические значения, превышающие Q0,01 и, следовательно, безусловно значимые. Влево от критического значения Q0,05 простирается "зона незначимое", - сюда попадают эмпирические значения Q, которые ниже Q0,05 и следовательно, безусловно незначимы. Мы видим, что Q0,05=6; Q0,01=9; Qэмп=8. Эмпирическое значение критерия попадает в область между Q0,05и Q0,01- Это зона "неопределенности": мы уже можем отклонить гипотезу о недостоверности различий (HQ), но еще не можем принять гипотезы об их достоверности. Практически, однако, исследователь может считать достоверными уже те различия, которые не попадают в зону не значимости, заявив, что они достоверны при р<0,05, или указав точный уровень значимости полученного эмпирического значения критерия, например: р=0,02. С помощью таблиц это можно сделать по отношению к критериям Н Крускала-Уоллиса, у}г Фридмана, L Пейджа, ф* Фишера, X Колмогорова. Уровень статистической значимости или критические значения критериев определяются по-разному при проверке направленных и ненаправленных статистических гипотез. При направленной статистической гипотезе используется односторонний критерий, при ненаправленной гипотезе - двусторонний критерий. Двусторонний критерий более строг, поскольку он проверяет различия в обе стороны, и поэтому то эмпирическое значение критерия, которое ранее соответствовало уровню значимости р<0,05, теперь соответствует лишь уровню р<0,01.
Вопрос 9. ПАРАМЕТРИЧЕСКИЕ И НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ. МОЩНОСТЬ КРИТЕРИЕВ. Все критерии различий подразделены на 2 группы: параметрические и непараметрические. Параметрические – если он основан на конкретном типе распределения генеральной совокупности или используются параметры этой совокупности. Непараметрические – если не базируется на предложении о типе распределения генеральной совокупности и не использует параметры этой совокупности. При нормальном распределении параметрические критерии обладают большей мощностью. Иными словами, они способны с большей достоверностью отвергнуть нулевую гипотезу, если последняя неверна. По этой причине в случаях, когда выборки взяты из нормального распределения предпочтение следую отдавать параметрическим критерия. Если данные не распределены нормально, то непараметрические критерии оказываются более мощными, т.е. способными с большей достоверностью отвергать нулевую гипотезу. ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ 1. Позволяют прямо оценить различия в средних, полученных в двух выборках (t - критерий Стьюдента). 6.Позволяют прямо оценить различия в дисперсиях (критерий Фишера). 7.Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный 8.Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). 9.Экспериментальные данные должны отвечать двум, а иногда трем, условиям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. 8.Математические расчеты довольно сложны. 9.Если условия, перечисленные в п.5, выполняются, параметрические критерии оказываются несколько более НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ 1. Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А встречаются более высокие, а в выборке Б - более низкие значения признака (критерии Q, U, φ* и др.). 2.Позволяют оценить лишь различия в диапазонах вариативности признака (критерий φ*). 3.Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерии тенденций L и S). 4.Эта возможность отсутствует. 5.Экспериментальные данные могут не отвечать ни одному из этих условий: а) значения признака могут быть представлены в любой шкале, начиная от шкалы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения в) требование равенства дисперсий отсутствует. 6.Математические расчеты по большей части просты и занимают мало времени (за исключением критериев χ2 и λ).
|
||||
Последнее изменение этой страницы: 2016-06-19; просмотров: 682; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.62.238 (0.009 с.) |