Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 1. Математика и психология

Поиск

Вопрос 1. МАТЕМАТИКА И ПСИХОЛОГИЯ

Для существования психологии как науки она в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех стра­нах и не в полной мере. Точной даты начала пути математизации, пожалуй, не знает ни одна наука.

По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следова­тельно, они в дальнейшем развитии научной психологии подле­жат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».

М.В.Дро­биш издал в Лейпциге на немецком языке монографию под не­двусмысленным названием: «Эмпирическая психология соглас­но естественнонаучному методу». В этой книге нет математики в смысле формул, символики и рас­четов, но там есть четкая система понятий о характеристиках пото­ка представлений в сознании как взаимосвязанных величинах.

Математические средства для изучения сложных многомерных объектов, в том числе высших психических функции — интеллекта, способностей, личности, стали создавать англоязычные ученые. Сре­ди других результатов оказалось, что рост потомков как бы стремит­ся возвратиться к среднему росту предков. Появилось понятие «рег­рессия», и были получены уравнения, выражающие эту зависимость. Был усовершенствован коэффициент, раньше предложенный фран­цузом Бравэ. Этот коэффициент количественно выражает соотно­шение двух изменяющихся переменных, т. е. корреляцию.

Чарльз Спирмен внес огромный вклад в развитие, он предложил теорию «генерального» фактора, определя­ющего совместную изменчивость переменных тестовых результа­тов, а также разработал метод выявления этого фактора по корре­ляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясня­ющую корреляции, предложил Леон Терстоун. Ему же принадле­жит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших мате­матических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.

Созданный в области био­логии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирова­ния и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом.

Многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые ма­тематиками. Для практических приложений математических ме­тодов за пределами математики, в том числе в психологии, мате­матические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.

 

Вопрос 2. ГЕНЕРАЛЬНАЯ И ВЫБОРОЧНАЯ СОВОКУПНОСТЬ.

Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность — это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, женщины 10-89 лет, использующие крем для рук определённой марки не реже одного раза в неделю, и имеющие доход не ниже 5 тысяч рублей на одного члена семьи.

Выборочная совокупность — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

  • Качественная характеристика выборки – что именно мы выбираем и какие способы построения выборки мы для этого используем.
  • Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

  • Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.
  • Существует необходимость в сборе первичной информации.

 

Вопрос 4. ТАБЛИЦЫ И ГРАФИКИ. ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ТАБЛИЦЫ.

Таблица – это рациональное изображение цифрового материала, полученного в результате статистического наблюдения. Таблица состоит из

1) макета,

2) цифрового материала.

Макет – заголовочная часть, отделяется жирными линиями, остаточная часть – хвост, котор в свою очередь делится на боковик (первую слева графу) и прографку (остальные части таблицы).

Каждая таблица состоит из 2х элементов – подлежащего и сказуемого. Подлежащее – это то, о чём говорится в данной таблице (объект исследования). Подлежащее записывается слева в таблице по строкам. Сказуемое – это то, что говорится о подлежащем. Сказуемое записывается справа в графах. В зависимости от построения подлежащего и сказуемого различают простые и сложные таблицы. Простая таблица – подлежащее которой не о группировано. Это таблица подлежащее которой содержит перечень единиц наблюдения (перечневая таблица), хронологических дат (хронолог таблица) или территориальных подразделений (территориальная таблица) Такие таблицы имеют чисто описательный характер. Их задача показать существенные типы явлений.
Групповая - это таблица, подлежащее которой содержит группировку единиц наблюдения по одному существенному признаку.
Комбинационная - таблица, подлежащее которой содержит группировку единиц наблюдения по двум или нескольким существенным признакам взятым в совокупности.
График – это наглядное изображение табличного материала. Любой график строится на основании таблицы. График состоит из:

графического образа

поля графика

пространственных и масштабных ориентиров

экспликации графика.

Полем графика является место, на котором он выполняется. Графический образ — это символические знаки, с помощью которых изображаются статистические данные (линии, точки, прямоугольники, квадраты, круги и т.д.). Пространственные ориентиры определяют размещение графических образов. Масштабные ориентиры придают этим образам количественную определенность. Вводятся ось абсцисс и ось ординат, как правило, используется равномерная линейная шкала и на осях откладываются масштабы. Экспликация графика — это пояснение его содержания, включает в себя заголовок графика, объяснения масштабных шкал, условные обозначения. Графики различают в соответствии с 2 признаками:

1) графические образы,

2) задачи, решаемые с помощью графика.

Графические образы выбираются в зависимости от цели, поставленной перед графиком. В зависимости от графического образа различают виды графиков: точечные, линейные, полосовые, столбиковые, квадратные, круговые, секторные, прямоугольные, фигурные. Графики важны не только для придания наглядности, но и имеют большое аналитическое значение. Посредством графиков выявляются качественные особенности и тенденции в развитии явлений, изучается структура и динамика сложных совокупностей, устанавливается теснота связей между признаками, обнаруживаются ошибки в статистических материалах.

 

ВЫБОРОЧНОЕ СРЕДНЕЕ

Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества.

Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была под­вергнута психодиагностическому обследованию. Сравнивая не­посредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Выборочное среднее определяется при помощи следующей формулы:

где

хср —выборочная средняя величина или среднее арифметичес­кое значение по выборке;

п — количество испытуемых в выбор­ке или частных психодиагностических показателей, на основе ко­торых вычисляется средняя величина;

xk частные значения по­казателей у отдельных испытуемых. Всего таких показателей п, поэтому индекс k данной переменной принимает значения от 1 до п;

— принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака.

Выра­жение соответственно означает сумму всех х с индексом k от 1 до n.

Пример. Допустим, что в результате применения психодиаг­ностической методики для оценки некоторого психологическо­го свойства у десяти испытуемых мы получили следующие част­ные показатели степени развитости данного свойства у отдель­ных испытуемых: х1= 5, х2 = 4, х3 = 5, х4 = 6, х5 = 7, х6 = 3, х7 = 6, х8= 2, х9= 8, х10 = 4. Следовательно, п = 10, а индекс k меняет свои значения от 1 до 10 в приведенной выше формуле. Для данной выборки среднее значение, вычисленное по этой формуле, бу­дет равно:

ДИСПЕРСИЯ

Дисперсия как статистическая, величина характеризует, насколько частные значения отклоняются от средней величины в данной выборке.

Чем больше дисперсия, тем больше отклонения или разброс данных. Прежде чем представлять формулу для рас­четов дисперсии, рассмотрим пример. Воспользуемся теми пер­вичными данными, которые были приведены ранее и на основе которых вычислялась в предыдущем примере средняя величи­на. Мы видим, что все они разные и отличаются не только друг от друга, но и от средней величины. Меру их общего отличия от средней величины и характеризует дисперсия. Ее определяют для того, чтобы можно было отличать друг от друга величины, име­ющие одинаковую среднюю, но разный разброс.

Представим се­бе другую, отличную от предыдущей выборку первичных значе­ний, например такую: 5, 4, 5, 6, 5, 6, 5, 4, 5, 5. Легко убедиться в том, что ее средняя величина также равна 5,0. Но в данной вы­борке ее отдельные частные значения отличаются от средней го­раздо меньше, чем в первой выборке. Выразим степень этого отличия при помощи дисперсии, которая определяется по следую­щей формуле:

 

где выборочная дисперсия, или просто дисперсия;

выражение, означающее, что для всех xk от перво­го до последнего в данной выборке необходимо вычислить раз­ности между частными и средними значениями, возвести эти раз­ности в квадрат и просуммировать;

п — количество испытуемых в выборке или первичных зна­чений, по которым вычисляется дисперсия.

 

Определим дисперсии для двух приведенных выше выборок частных значений, обозначив эти дисперсии соответственно ин­дексами 1 и 2:

 

Мы видим, что дисперсия по второй выборке (0,4) значитель­но меньше дисперсии по первой выборке (3,0). Если бы не было дисперсии, то мы не в состоянии были бы различить данные вы­борки.

 

ВЫБОРОЧНОЕ ОТКЛОНЕНИЕ

 

Иногда вместо дисперсии для выявления разброса частных дан­ных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат­ному корню, извлекаемому из дисперсии, и обозначается тем же

самым знаком, что и дисперсия, только без квадрата—

 

МЕДИАНА

Медианой называется значение изучаемого признака, кото­рое делит выборку, упорядоченную по величине данного призна­ка, пополам.

Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков. Например, для выборки 2, 3,4, 4, 5, 6, 8, 7, 9 медианой будет значение 5, так как слева и справа от него остается по четыре показателя. Если ряд включает в себя четное число признаков, то медианой будет сред­нее, взятое как полусумма величин двух центральных значений ряда. Для следующего ряда 0, 1, 1, 2, 3, 4, 5, 5, 6, 7 медиана будет равна 3,5.

Знание медианы полезно для того, чтобы установить, явля­ется ли распределение частных значений изученного признака симметричным и приближающимся к так называемому нормаль­ному распределению. Средняя и медиана для нормального рас­пределения обычно совпадают или очень мало отличаются друг от друга.

Если выборочное распределение признаков нормаль­но, то к нему можно применять методы вторичных статистичес­ких расчетов, основанные на нормальном распределении данных. В противном случае этого делать нельзя, так как в расчеты могут вкрасться серьезные ошибки.

Если в книге по математической статистике, где описывает­ся тот или иной метод статистической обработки, имеются ука­зания на то, что его можно применять только к нормальному или близкому к нему распределению признаков, то необходимо неукоснительно следовать этому правилу и полученное эмпиричес­кое распределение признаков проверять на нормальность.

Если такого указания нет, то статистика применима к любому распре­делению признаков.

МОДА

Мода еще одна элементар­ная математическая статистика и характеристика распределе­ния опытных данных. Модой называют количественное зна­чение исследуемого признака, наиболее часто встречающееся в выборке. На графиках, пред­ставленных на рис. 72, моде со­ответствуют самые верхние точки кривых, вернее, те значе­ния этих точек, которые располагаются на горизонтальной оси.

Для симметричных распределений признаков, в том числе для нормального распределения, значения моды совпадают со значениям среднего и медианы. Для других типов распре­делений, несимметричных, это не характерно.

К примеру, в по­следовательности значений признаков 1, 2, 5, 2, 4, 2, 6, 7, 2 модой является значение 2, так как оно встречается чаще других значе­ний — четыре раза.

ИНТЕРВАЛ

Иногда исходных частных первичных данных, которые под­лежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных ариф­метических операций. Для того чтобы сократить их число и вмес­те с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы.

Интервалом называется группа упорядоченных по ве­личине значений признака, заменяемая в процессе расчетов сред­ним значением.

Пример. Представим следующий ряд частных признаков: О, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11. Этот ряд включает в себя 30 значений.

Разобьем представ­ленный ряд на шесть подгрупп по пять признаков в каждом.

*Пер­вая подгруппа включит в себя первые пять цифр,

*вторая — сле­дующие пять и т.д.

Вычислим средние значения для каждой из пяти образованных подгрупп чисел. Они соответственно будут равны 1,2; 3,4; 5,2; 6,8; 8,6; 10,6.

Таким образом, нам удалось свести исходный ряд, включающий тридцать значений, к ряду, содер­жащему всего шесть значений и представленному средними ве­личинами. Это и будет интервальный ряд, а проведенная проце­дура — разделением исходного ряда на интервалы.

На практике, со­ставляя интервальный ряд, рекомендуется руководствоваться следующим правилом: если в исходном ряду признаков больше чем тридцать, то этот ряд целесообразно разделить на пять-шесть интервалов и в дальнейшем работать только с ними.

Для проверки сказанного проведем пробное вычисление сред­него значения по приведенному выше ряду, составляющему трид­цать чисел, и по ряду, включающему только интервальные средние значения. Полученные цифры с точностью до двух знаков после запятой будут соответственно равны 5,97 и 5,97, т.е. явля­ются одинаковыми.

 

 

Направленные гипотезы

H0: X1 не превышает Х2

H1: X1 превышает Х2

Ненаправленные гипотезы
H0; X1 не отличается от Х2
H1: X1 отличается от Х2

Параметрические критерии

Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (/-критерий Стьюдента, критерий F и др.)

Непараметрические критерия

Критерии, не включающие в формулу расчета параметров распределе­ния и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)

И те, и другие критерии имеют свои преимущества и недостатки. На основании нескольких руководств можно составить таблицу, позво­ляющую оценить возможности и ограничения тех и других (Рунион Р., 1982; McCall R., 1970; J.Greene, M.D'Olivera, 1989).

 

Таблица 1.1

Возможности и ограничения параметрических и непараметрических критериев

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ

1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента).

2.Позволяют прямо оценить различия в дисперсиях (критерий Фишера).

3.Позволяют выявить тенденции изме­нения признака при переходе от ус­ловия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака.

4.Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ).

5.Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям:

а) значения признака измерены по интервальной шкале;

б) распределение признака является нормальным;

в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса.

6.Математические расчеты довольно сложны.

7.Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более
мощными, чем непараметрические.

НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ

1. Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ* и др.).

2.Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ*).

3.Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).

4.Эта возможность отсутствует.

5.Экспериментальные данные могут не от­вечать ни одному из этих условий:

а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований;

б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения
необязательно и не нуждается в проверке;

в) требование равенства дисперсий отсут­ствует.

6.Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ2 и λ).
7.Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувствительны к "засорениям".

 

Из Табл. 1.1 мы видим, что параметрические критерии могут оказаться несколько более мощными4, чем непараметрические, но толь­ко в том случае, если признак измерен по интервальной шкале и нор­мально распределен. С интервальной шкалой есть определенные про­блемы (см. раздел "Шкалы измерения"). Лишь с некоторой натяжкой мы можем считать данные, представленные не в стандартизованных оценках, как интервальные. Кроме того, проверка распределения "на нормальность" требует достаточно сложных расчетов, результат кото­рых заранее неизвестен (см. параграф 7.2). Может оказаться, что рас­пределение признака отличается от нормального, и нам так или иначе все равно придется обратиться к непараметрическим критериям.

4 О понятии мощности критерия см. ниже.

 

Непараметрические критерии лишены всех этих ограничений и не требуют таких длительных и сложных расчетов. По сравнению с пара­метрическими критериями они ограничены лишь в одном - с их помо­щью невозможно оценить взаимодействие двух или более условий или факторов, влияющих на изменение признака. Эту задачу может решить только дисперсионный двухфакторный анализ.

Учитывая это, в настоящее руководство включены в основном непараметрические статистические критерии. В сумме они охватывают большую часть возможных задач сопоставления данных.

Единственный параметрический метод, включенный в руково­дство - метод дисперсионного анализа, двухфакторный вариант которого ничем невозможно заменить.

 

 

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ

1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента).

6.Позволяют прямо оценить различия в дисперсиях (критерий Фишера).

7.Позволяют выявить тенденции изме­нения признака при переходе от ус­ловия к условию (дисперсионный
однофакторный анализ), но лишь при условии нормального распреде­ления признака.

8.Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ).

9.Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям:

а) значения признака измерены по интервальной шкале;

б) распределение признака является нормальным;

в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса.

8.Математические расчеты довольно сложны.

9.Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более
мощными, чем непараметрические.

НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ

1. Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ* и др.).

2.Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ*).

3.Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).

4.Эта возможность отсутствует.

5.Экспериментальные данные могут не от­вечать ни одному из этих условий:

а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований;

б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения
необязательно и не нуждается в проверке;

в) требование равенства дисперсий отсут­ствует.

6.Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ2 и λ).
7.Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувствительны к "засорениям".

 

 

НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ

1. Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ* и др.).

2.Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ*).

3.Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).

4.Эта возможность отсутствует.

5.Экспериментальные данные могут не от­вечать ни одному из этих условий:

а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований;

б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения
необязательно и не нуждается в проверке;

в) требование равенства дисперсий отсут­ствует.

6.Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ2 и λ).
7.Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувствительны к "засорениям".

Выборки 3 выборки и более

               
       

 

 


n1, n2 ≥ 11, n1 или n2<11 n ≤ 10 c≤6 n ˃ 10 c ˃ 6

                   
       
     
 

 


критерий критерий критерий тенденций критерий

Q Розенбаума U Манна Уитни S Джонкира H Крускара Уолеса

 

 

Если различия не выявляются, то использовать угловое преобразование Фишера

 

Q - критерий Розенбаума

Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

U - критерий Манна-Уитни

Критерий предназначен для оценки различий между бвумя выборками по уровню какого-либо признака, количественного измеренного. Он позволяет выявлять различия между малыми выборками, когда n1, n2 >3 или n1=2, n2> 3 и является более мощным, чем критерий Розенбаума.

Вопрос 1. МАТЕМАТИКА И ПСИХОЛОГИЯ

Для существования психологии как науки она в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех стра­нах и не в полной мере. Точной даты начала пути математизации, пожалуй, не знает ни одна наука.

По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следова­тельно, они в дальнейшем развитии научной психологии подле­жат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».

М.В.Дро­биш издал в Лейпциге на немецком языке монографию под не­двусмысленным названием: «Эмпирическая психология соглас­но естественнонаучному методу». В этой книге нет математики в смысле формул, символики и рас­четов, но там есть четкая система понятий о характеристиках пото­ка представлений в сознании как взаимосвязанных величинах.

Математические средства для изучения сложных многомерных объектов, в том числе высших психических функции — интеллекта, способностей, личности, стали создавать англоязычные ученые. Сре­ди других результатов оказалось, что рост потомков как бы стремит­ся возвратиться к среднему росту предков. Появилось понятие «рег­рессия», и были получены уравнения, выражающие эту зависимость. Был усовершенствован коэффициент, раньше предложенный фран­цузом Бравэ. Этот коэффициент количественно выражает соотно­шение двух изменяющихся переменных, т. е. корреляцию.

Чарльз Спирмен внес огромный вклад в развитие, он предложил теорию «генерального» фактора, определя­ющего совместную изменчивость переменных тестовых результа­тов, а также разработал метод выявления этого фактора по корре­ляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясня­ющую корреляции, предложил Леон Терстоун. Ему же принадле­жит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших мате­матических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.

Созданный в области био­логии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирова­ния и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом.

Многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые ма­тематиками. Для практических приложений математических ме­тодов за пределами математики, в том числе в психологии, мате­матические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.

 



Поделиться:


Последнее изменение этой страницы: 2016-06-19; просмотров: 455; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.203.55 (0.013 с.)