Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вектор напряжённости магнитного поля и его связь с векторами индукции и намагниченности.Магнитная восприимчивость и магнитная проницаемость вещества.

Поиск

Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

Напряженность магнитного поля в СИ - ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поля в данной точке, то можно определить индукцию поля в этой точке.

Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.

Намагниченность — характеристика магнитного состояния макроскопического физического тела.

Однородно намагниченное тело:

Любое вещество, помещенное в магнитное поле, приобретает некоторый магнитный момент. Намагниченность J – это магнитный момент единицы объема.

В несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничивание::

Если же тело намагничено неоднородно (состоит из нескольких частей), то намагниченность определяется для каждого физически малого объема dV

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ, величина, характеризующая связь намагниченности вещества с магнитным полем в этом веществе. М. в. в статич. полях равна отношению намагниченности вещества М к напряжённости Н намагничивающего поля: ; - величина безразмерная. М. в., рассчитанная на 1 кг (или 1 г) вещества, наз. удельной (, где р - плотность вещества), а М. в. одного моля - молярной (или атомной): , где т - молекулярная масса вещества. С магнитной проницаемостью . в. в статич. полях (статич. М. в.) связана соотношениями: (в ед. СГС), (в ед. СИ). М. в. может быть как положительной, так и отрицательной. Отрицательной М. в. обладают диамагнетики (ДМ), они намагничиваются против поля; положительной - парамагнетики (ПМ) и ферромагнетики (ФМ), они намагничиваются по полю. М. в. ДМ и ПМ мала по абс. величине , она слабо зависит от Н и то лишь в области очень сильных полей (и низких темп-р).

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:

18.Диамагнетики,парамагнетики,ферромагнетики.

Слабо-магнитные вещества делятся на две большие группы – парамагнетики и диамагнетики. Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиковμ > 1, а у диамагнетиков μ < 1. Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам,μ – 1 ≈ 2,1·10–5, у хлористого железа (FeCl3) μ – 1 ≈ 2,5·10–3. К парамагнетикам относятся также платина, воздух и многие другие вещества. К диамагнетикам относятся медь(μ – 1 ≈ –3·10–6), вода (μ – 1 ≈ –9·10–6), висмут (μ – 1 ≈ –1,7·10–3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются (рис. 1.19.1).

Рисунок 1.19.1. Парамагнетик (1) и диамагнетик (2) в неоднородном магнитном поле

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 102–105. Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.

К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков.

Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.

Ферромагнитные материалы делятся на две большие группы – на магнито-мягкие и магнито-жесткие материалы. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие метериалы используются в основном для изготовления постоянных магнитов.

Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B 0 внешнего поля. Типичная зависимость μ (B 0) приведена на рис. 1.19.2. В таблицах обычно приводятся значения максимальной магнитной проницаемости.



Поделиться:


Последнее изменение этой страницы: 2016-06-23; просмотров: 3557; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.97.161 (0.008 с.)