ТОП 10:

НАПРЯЖЕННОСТЬ МАГНИТНОГО ПОЛЯ В СРЕДЕ. ПРОНИЦАЕМОСТЬ.



Напряжённость магнитного поля, векторная физическая величина (Н), являющаяся количественной характеристикой магнитного поля. Н. м. п. не зависит от магнитных свойств среды. В вакууме Н. м. п. совпадает с магнитной индукцией В; численно Н = В в СГС системе единиц и Н = В/m0 в Международной системе единиц (СИ), m0 — магнитная постоянная. В среде Н. м. п. Н определяет тот вклад в магнитную индукцию В, который дают внешние источники поля: Н = В — 4pj (в системе единиц СГС), или Н = (B/m0) — j (в СИ), где j — намагниченность среды.

Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией B и магнитным полем H в веществе. Обозначается μ. У изотропных веществ μ = B / H (в Международной системе единиц СИ). Выделяют относительную и абсолютную магнитные проницаемости , где μr - относительная, а μ - абсолютная проницаемость, μ0 — магнитная постоянная.

Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В)является обобщением закона (118.1): где I и I' — соответственно алгебраические суммы макротоков (токов проводимости) и микротоков (молекулярных токов), охватываемых произвольным замкнутым кон­туром L. Таким образом, циркуляция вектора магнитной индукции В по произволь­ному замкнутому контуру равна алгебраической сумме токов проводимости и молеку­лярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Тогда закон полного тока для магнитного поля в веществе можно записать также в виде (133.9) где I, подчеркнем это еще раз, есть алгебраическая сумма токов проводимости. Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор H напряженности магнитного поля. Итак, циркуляция вектора Н по произвольному замкнутому контуру L равна алгебраической сумме токов проводимости, охватываемых этим контуром: (133.10) Выражение (133.10) представляет собой теорему о циркуляции вектора Н.

 

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.

(137.1) где символ частной производной подчеркивает тот факт, что интеграл BdS является функцией только от времени. Циркуляция вектора напряженности электростатического поля (обозначим его EQ) вдоль любого замкнутого контура равна нулю:

(137.3) Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми полями (EB и ЕQ) имеется принципиальное различие: циркуляция вектора EB в отличие от циркуляции вектора EQ не равна нулю. Следовательно, электрическое поле EB, возбуж­даемое магнитным полем, как и само магнитное поле (см. § 118), является вихревым.

Вихревое электрическое поле не является фундаментальным физическим полем. Его природа состоит в действии обычных сил инерции, связанных с изменением скорости движения или скорости вращения полевой среды. Индукционное электрическое поле является вихревым.

Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

ПЛОТНОСТЬ ТОКА СМЕЩЕНИЯ. УРАВНЕНИЯ МАКСВЕЛЛА.

Ток смещения — понятие из области теории классической электродинамики. Введено Дж. К. Максвеллом при построении теории электромагнитного поля для описания слабых токов, возникающих при смещении заряженных частиц в диэлектриках. Для описания и объяснения «прохождения» переменного тока через конденсатор (разрыв по постоянному току) Максвелл ввёл понятие тока смещения. (138.2) Выражение (138.2) и было названо Максвеллом плотностью тока смещения.

Итак, полная система уравнений Максвелла в интегральной форме:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

где e0 и m0 — соответственно электрическая и магнитная постоянные, e и m — соответст­венно диэлектрическая и магнитная проницаемости, g — удельная проводимость веще­ства. Можно представить полную систему уравнении Максвелла в дифференциальном форме (характеризующих поле в каждой точке пространства):

 







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.172.213 (0.006 с.)