Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Индуктивность контура. Самоиндукция↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре: Ф=LI, (126.1) где коэффициент пропорциональности L называется индуктивностью контура. При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн=1 Вб/А=1В•с/А. Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид (потокосцепление) равен m0m(N2I/l) S. Подставив это выражение в формулу (126.1), получим т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости m вещества, из которого изготовлен сердечник соленоида. Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. §93). Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L =const и где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем возрастает, то dI/dt>0 и ξs<0, т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξ s> 0, т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура. $ 127. Токи при размыкании и замыкании цепи При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э.д.с. в цепи течет постоянный ток I 0=ξ/ R (внутренним сопротивлением источника тока пренебрегаем). В момент времени t= 0отключим источник тока. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции ξ s=-LdI/dt, препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или IR=-LdI/dt. (127.1) Разделив в выражении (127.1) переменные, получим d I/I = -(R/L)dt. Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=- Rt/L, или где t=L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции ξs=-LdI/dt, препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR=ξ+ξs, или IR = ξ-LdI/dt. Введя новую переменную u=IR-ξ, преобразуем это уравнение к виду du/u=-dt/t, где 1 — время релаксации. В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегрируя по и (от -ξ до IR — ξ) и t (от 0 до t). находим ln(IR -ξ)/-ξ =-t/t, или где I 0=ξ /R — установившийся ток (при t®¥) Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к установившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же временем релаксации t =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение э.д.с. самоиндукции ξ s, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I 0=ξ/R0. При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим Э.д.с. самоиндукции т. е. при значительном увеличении сопротивления цепи (R/R 0 >> 1 ) обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений. Взаимная индукция Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в контуре 1 течет ток I 1, то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I 1. Обоз начим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда Ф21= L 21/ I 1, (128.1) где L 21 — коэффициент пропорциональности. Если ток I 1 изменяется, то в контуре 2 индуцируется э.д.с. ξi2, которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф21, созданного током в первом контуре и пронизывающего второй: Аналогично, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 184 штриховой линией) пронизывает первый контур. Если Ф12— часть этого потока, пронизывающего контур 1, то Ф12 = L 12 I 2. Если ток I 2 изменяется, то в контуре 1 индуцируется э.д.с. ξi1, которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что l 21и L 12равны друг другу, т. е. L I2 = L 2I. (128.2) Коэффициенты L 12и L 21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности,— генри (Гн). Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, создаваемого первой катушкой с числом витков N 1, током I 1 и магнитной проницаемостью m, сердечника, согласно (119.2), B=m 0 mN 1 I 1 /l, где l — длина сердечника по средней линии. Магнитный поток через один виток второй катушки Ф2=BS=m0m(N 1 I 1/ l)S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков, Поток yсоздается током I 1, поэтому, согласно (128.1), получаем Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник, Трансформаторы Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П. Н. Яблочковым (1847—1894) и русским физиком И. Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186. Первичная и вторичная катушки (обмотки), имеющие соответственно n 1и N 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. ξ1, то в ней возникает переменный ток I 1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции. Ток I 1 первичной обмотки определяется согласно закону Ома: где R 1— сопротивление первичной обмотки. Падение напряжения I 1 R 1на сопротивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому Э.д.с. взаимной индукции, возникающая во вторичной обмотке, Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вторичной обмотке, где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков N 2 /N 1, показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации. Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы: ξ 2 I 2 »ξ 1 I 1, откуда, учитывая соотношение (129.3), найдем ξ2/ξ1= I 1/ I 2 = N 2/ N 1, т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках. Если N 2 /N 1>1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N2/N 1<1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении). Мы рассматривали трансформаторы, имеющие только две обмотки. Однако трансформаторы, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки. Энергия магнитного поля Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля. Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф= LI, причем при изменении тока на d I магнитный поток изменяется на dФ= L d I. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу d A = I dФ= LI d I. Тогда работа по созданию магнитного потока Ф будет равна Следовательно, энергия магнитного поля, связанного с контуром, W=LI2/2. (130.1) Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля. Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим Так как I=Вl/ (m0mN) (см. (119.2)) и В=m 0 mH (см. (109.3)), то где Sl = V — объем соленоида. Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам
Вихревое электрическое поле Из закона Фарадея ξ=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы — силы неэлектростатического происхождения. Поэтому возникает вопрос о природе сторонних сил в данном случае. Опыт показывает, что эти сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение также нельзя объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла, контур, в котором появляется э.д.с., играет второстепенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле. Итак, по Максвеллу, изменяющееся во времени магнитное поле порождает электрическое поле Е B, циркуляция которого, по (123.3), где E Bl — проекция вектора E B на направление d l. Подставив в формулу (137.1) выражение , получим Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно, где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени. Согласно (83.3), циркуляция вектора напряженности электростатического поля (обозначим его e q) вдоль любого замкнутого контура равна нулю: Сравнивая выражения (137.1) и (137.3), видим, что между рассматриваемыми полями (Е B и e q) имеется принципиальное различие: циркуляция вектора Е B в отличие от циркуляции вектора e q не равна нулю. Следовательно, электрическое поле Е B, возбуждаемое магнитным полем, как и само магнитное поле, является вихревым. Ток смещения Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения. Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники. Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток проводимости, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (I см) равны: I см= I. Ток проводимости вблизи обкладок конденсатора (поверхностная плотность заряда sна обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения (д D / д t)d S, когда д D / д t и d S взаимно параллельны. Поэтому для общего случая можно записать Сравнивая это выражение с I = I см = (см. (96.2)), имеем Выражение (138.2) и было названо Максвеллом плотностью тока смещения. Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и j см. При зарядке конденсатора (рис. 197, а) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, вектор D растет со временем; следовательно, д D / д t>0, т.е. вектор д D / д t направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов д D / д t и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется, вектор D убывает со временем; следовательно, д D / д t<0, т. е. вектор at д D / д t направлен противоположно вектору D. Однако вектор д D / д t направлен опять так же, как и вектор j. Из разобранных примеров следует, что направление вектора j, а следовательно, и вектора j см совпадает с направлением вектора д D / д t, как это и следует из формулы (138.2). Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховой линией). В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D =e0 E + P, где Е — напряженность электростатического поля, а Р — поляризованность (см. § 88), то плотность тока смещения где e0 д E / д t — плотность тока смещения в вакууме, д P / д t — плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая (e0 д E / д t), часть плотности тока смещения (e0 д E / д t), не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возникновению в окружающем пространстве магнитного поля. Следует отметить, что название «ток смещения» является условным, а точнее — исторически сложившимся, так как ток смещения по своей сути — это изменяющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым течет переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально советским физиком А. А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения. Максвелл ввел понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока jполн=j+ д D / д t. Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рассмотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости. Максвелл обобщил теорему о циркуляции вектора Н (см. (133.10)), введя в ее правую часть полный ток I полн= сквозь поверхность S, натянутую на замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 2632; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.169.56 (0.015 с.) |