Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Процессы включения и отключения цепи с катушкой индуктивности↑ ⇐ ПредыдущаяСтр 8 из 8 Содержание книги
Поиск на нашем сайте
Общие сведения
Цепь с одной катушкой индуктивности, так же как и цепь с одним конденсатором описывается дифференциальным уравнением первого порядка. Поэтому все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной времени () от начального значения до установившегося. Причём, начальное значение тока в индуктивности равно току в ней непосредственно перед коммутацией, так как ток в катушке не может изменяться скачком по закону коммутации. Напряжение на катушке может изменяться скачком и при отключении может достигать весьма больших значений. В данной работе коммутация (включение и выключение цепи) осуществляется транзистором, на базу которого подаются однополярные прямоугольные отпирающие импульсы тока от генератора напряжений специальной формы с частотой 200 Гц. Поэтому оба переходных процесса периодически повторяются и их можно наблюдать на обычном или виртуальном осциллографе.
Экспериментальная часть Задание Вывести на дисплей виртуального осциллографа кривые тока и напряжения на катушке индуктивности при подключении и отключении источника постоянного напряжения. В каждом из этих случаев определить экспериментально и рассчитать докоммутационные (t = - 0), начальные (t = + 0) и установившиеся (t® ) значения тока и напряжения на катушке, определить по осциллограмме постоянную времени цепи . Экспериментальная часть
Рис. 10.2.1 · Включите осциллограф, установите развёртку 0,5 мС/дел и перерисуйте изображение тока и напряжения на катушке на график (рис.10.2.2). Не забудьте указать масштаб для каждой кривой. · Определите по графику или непосредственно по осциллографу докоммутационные (t = - 0) начальные (t = + 0) и установившиеся (t® ) значения токов и напряжений на катушке в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается. Занесите их в табл. 10.2.1. · Рассчитайте токи и напряжения на катушке для этих же моментов времени, занесите результаты также в табл. 10.2.1. Сравните результаты расчёта и эксперимента. · Определите по осциллограммам постоянные времени при включенном и при отключенном источнике питания.
Таблица 10.1.1
Рис.10.2.2 Затухающие синусоидальные колебания в R-L-C контуре Общие сведения
Взамкнутом контуре (рис. 10.3.1) после отключении его от источника постоянного или переменного напряжения могут возникнуть затухающие синусоидальные колебания, обусловленные начальным запасом энергии в электрическом поле конденсатора и в магнитном поле катушки индуктивности. В общем случае состояние цепи определяется из дифференциального уравнения, составленного по второму закону Кирхгофа:
Поскольку то
или
Рис. 10.3.1.
Вид решения этого дифференциального уравнения зависит от характера корней характеристического уравнения:
Корни этого уравнения: Когда , корни вещественные отрицательные и процесс изменения тока и напряжений имеет апериодический затухающий характер (рис.10.3.2а). Если же R<Rкр, то возникает колебательный процесс (рис. 10.3.2б). Тогда решение дифференциального уравнения имеет вид:
sin wt, где , .
Рис. 10.3.2.
При уменьшении сопротивления от некоторого значения большего, чем Rкр сначала увеличивается скорость затухающего апериодического процесса, затем, при R=Rкр качественно изменяется характер процесса – он становится колебательным - и при дальнейшем уменьшении сопротивления увеличивается частота колебаний и уменьшается затухание. При R, стремящемся к нулю, частота стремится к резонансной частоте , а затухание d – к нулю. В данной работе заряд конденсатора до напряжения u0 осуществляется однополярными прямоугольными импульсами напряжения и исследуется процесс его разряда на сопротивление и индуктивность во время пауз между импульсами. Повторяющийся процесс заряда и разряда конденсатора можно наблюдать на электронном или виртуальном осциллографе. Экспериментальная часть
Задание Исследовать влияние активного сопротивления на характер процесса разряда конденсатора на сопротивление и индуктивность. Сравнить экспериментальные частоту и затухание колебаний с расчётными значениями.
Порядок выполнения работы
. R к= Ом.
· Вычислите резонансную частоту и критическое сопротивление колебательного контура: Гц; Ом;
Рис. 6.10.3.
T = мС, f = Гц.
Убедитесь, что полученное значение частоты близко к резонансной частоте.
· Установите регулятор потенциометра в положение, при котором процесс меняет характер, отключите питание и измерьте омметром добавочное сопротивление:
R доб = Ом. · Вычислите суммарное активное сопротивление колебательного контура:
R до б + R к = Ом
Убедитесь, что эта сумма близка к R кр.
Литература
1. Теоретические основы электротехники, Т 1, 2. Учебник для вузов / К.С. Демирчан, Л.Р.Нейман, Н.В. Коровин, В.Л.Чечурин. – СПб: Питер, 2004
2. Основы теории цепей. Учебник для вузов / Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –М.: Энергоатом издат, 1989.
3. Атабеков Г.И. Основы теории цепей, Учебник для вузов. М.: Энергия, 1969.
4. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. Учебник для электротехн., энерг., приборостроит. спец. вузов. – М.: Гардарики, 2000.
5. Герасимов В.Г., Кузнецов Э.В., Николаева О.В. и др. Электротехника и электроника: В 3 кн. Учебник для студентов неэлектротехнических специальностей вузов. Кн 1. Электрические и магнитные цепи. – М.: Энергоатомиздат, 1996.
6. Борисов Ю.М., Липатов Д.Н. Электротехника / Учебное пособие для неэлектротехнических специальностей вузов. – М.: Энергоатомиздат, 1985.
7. Волынский Б.А., Зейн Е.Н., Матерников В.Е. Электротехника. Учебное пособие для вузов. – М.: Энергоатомиздат, 1985.
8. Касаткин А.С., Немцов М.В. Электротехника: [Учебное пособие для неэлектротехнических специальностей вузов]: В 2 кн. – М.: Энергоатомиздат, 1995.
|
||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 197; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.180.253 (0.005 с.) |