Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Властивості залишків методу найменших квадратівСодержание книги
Поиск на нашем сайте
Нехай . Позначимо . Використовуючи введені векторно-матричні позначення, можна записати . Вектор залишків методу найменших квадратів e визначається як1) . Зміст поняття залишків такий же, як і в моделі простої лінійної регресії. Перепишемо систему нормальних рівнянь у такому вигляді: , або X T e = 0. (1.37) Ми бачимо, що вектор залишків ортогональний до кожного стовпчика матриці X. Згадаємо, що j -й стовпчик цієї матриці утворюють значення j -го регресора. Отже, залишки методу найменших квадратів ортогональні до регресорів. Якщо ми розглядаємо модель з константою, то перший стовпчик матриці X складається з одиниць, і з рівняння (1.37) випливає, що (1.38) В моделі з константою сума залишків методу найменших квадратів дорівнює нулю. Оскільки , то (1.39) внаслідок (1.39). Крім того вектор є лінійною комбінацією стовпчиків матриці X, тобто регресорів. Разом з (1.39) це дозволяє дати наступну геометричну інтерпретацію вектору і залишкам: є ортогональною проекцією на гіперплощину, породжену регресорами, а вектор залишків є проектором. Зі співвідношення (1.39) випливає ще один важливий наслідок: в моделі з костантою регресійна гіперплощина проходить через точку, координати якої дорівнюють середнім значення незалежних змінних. 1.2.4.Розклад дисперсії залежної змінної. Коефіцієнт детермінації В цьому параграфі ми розглянемо моделі з константою. Аналогічно тому, як ми робили у випадку простої регресії, проаналізуємо суму квадратів відхилень значень залежної змінної від середнього – загальну суму квадратів: (1.40) внаслідок (1.38), (1.39) і з урахуванням того, що = . Як і раніше, – пояснена сума квадратів, –сума квадратів залишків. Загальна сума квадратів пропорційна до вибіркової дисперсії незалежної змінної. Отже, формула розкладу дисперсії має місце і у випадку множинної регресії
(1.41).
Коефіцієнт множинної детермінаціїї (або, коротко, коефіцієнт детермінації визначається як частка поясненої і загальної сум квадратів (1.42). Коефіцієнт множинної детермінації показує, яка частина дисперсії залежної змінної пояснюється за рахунок моделі, або, іншими словами, незалежними змінними в сукупності. Підкреслимо, що коефіцієнт детермінації є мірою тісноти саме лінійного зв¢язку між залежною та незалежними змінними. Коефіцієнт детермінації завжди знаходиться в межах від нуля до одиниці. Чим ближче до 1, тим тісніше зв¢язок. Якщо = 1, це означає, що всі значення y належать гіперплощині, породженій стовпчиками матриці X. Якщо = 0, то лінійний зв¢язок між змінними відсутній. Коефіцієнт детермінації використовується як міра згоди і для множинної регресії. Зауваження 1 Без використання додаткової інформаціїї не можна робити висновків про те, яке значення вважати великим. Для деяких даних, наприклад, значення 0.8 може бути недостатнім, а в інших випадках величина 0.4 може бути прийнятною. Зауваження 2 В моделях без константи коефіцієнт детермінації не обов’язково знаходиться в межах від нуля до одиниці, оскількі подвоєний добуток у (1.40) не дорівнює нулю. В таких моделях різні способи визначення дають різні результати, і коефіцієнт детермінації важко інтерпретувати. Ні в якому разі не можна співвідносити моделі з константою і без константи на підставі порівняння коефіцієнтів детермінації. Взагалі, можна дати таку рекомендацію. Якщо немає економічних підстав для вибору регресійної функціі у вигляді без константи, то бажано розглядати модель з константою.
1.2.5. Статистичні властивості оцінок методу найменших квадратів Обчислимо математичне сподівання оцінок методу найменших квадратів. Підставимо формулу (1.30) до формули (1.34): 1.43) Маємо , оскільки лінійний множник можна виносити за знак математичного сподівання, і E e = 0. Отже, МНК-оцінки є незміщеними. Знайдемо коваріаційну матрицю оцінки b: Db = E(b - E b)(b - E b)T = E(b - b)(b - b)T = = . Ми скористались властивостями математичного сподівання, добутку транспонованих матриць, формулою (1.31), а також тим, що матриця X T X, аотже і обернена до неї, симетричні. (1.44) Позначимо матрицю через . Тоді (1.45) Наведені формули не можна використовувати для перевірки гіпотез та інтервального оцінювання, оскільки до них входить невідомий параметр – дисперсія збурень s2. Отже, нам потрібно вміти знаходити її оцінку. Має місце наступний результат: статистика , (1.46) де k – кількість регресорів, включаючи константу, є незміщеною оцінкою s2. Якщо збурення нормально розподілені, то b має багатовимірний нормальний розподіл, математичне сподівання і коваріаційна матриця якого обчислюються за формулою (1.44). Зокрема, . Величина має c2 - розподіл з n - k ступенями свободи і не залежить від b. Оцінка коваріаційної матриці коефіціентів методу найменших квадратів одержується підстановкою до формули (1.44) виразу (1.46) замість дисперсії збурень s2: , (1.47) зокрема
. Позначимо через s.e. ( bi) оцінку середньокватратичного відхилення коефіціента bi. (стандартнy похибку) Розмірковуючи так, як у випадку простої регресії, приходимо до висновку, що (1.48) Оцінки методу найменших квадратів є лінійними у тому розумінні, що b є лінійною функцією y. Наступна теорема встановлює оптимальні властивості оцінки методу найменших квадратів. Теорема Гауса-Маркова 1) Нехай припущення про нормальність збурень не накладається. Тоді МНК-оцінки мають мінімальну коваріаційну матрицю в класі незміщених лінійних оцінок. 2)Припустимо, що збурення нормально розподілені. МНК- оцінки мають мінімальну коваріаційну матрицю в класі усіх незміщених оцінок. Зокрема, оцінки індивідуальних коефіціентів bi мають найменші дисперсії серед оцінок відповідних класів.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 462; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.198.147 (0.006 с.) |