Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Оптические характеристики, используемые в фотонике и технологии оптических материалов для описания свойств стекол в диапазоне их прозрачности.Содержание книги
Поиск на нашем сайте
Для того, чтобы гарантировать точность привязки измеряемых значений к шкале длин волн, измерения показателя преломления бесцветных оптических материалов выполняются для определенных спектральных линий, возбуждаемых электрическим разрядом в парах различных элементов. Длины волн, соответствующие этим спектральным линиям, измерены с очень низкой погрешностью. Наиболее часто используемые линии перечислены в табл. 3. Основные оптические характеристики. Система понятий и терминология, используемые в прикладной оптике и технологии оптических материалов (см., например, [25,26]), была создана во второй половине девятнадцатого века усилиями немецкого ученого Эрнста Аббе. Таблица 3. Длины волн и буквенные обозначения спектральных линий, используемых при измерении показателя преломления бесцветных оптических материалов
*)Данная линия - тесный дублет; указано положение центра этого дублета.
Согласно развитому Эрнстом Аббе формализму, основными оптическими характеристиками применяемых на практике оптических материалов принято считать так называемый главный показатель преломления, среднюю дисперсию и коэффициент дисперсии (или число Аббе). Во временаШотта и Аббе эти характеристики были привязаны к вполне определенным длинам волн видимого диапазона и соответственно к конкретным спектральным линиям. Однако в дальнейшем выбор длин волн отчасти менялся, и поэтому мы используем сначала более общие обозначения главного показателя преломления, средней дисперсии и коэффициента дисперсии – nl 1, nl 2- nl 3и nl 1соответственно. Главный показатель преломления nl 1– это значение показателя преломления при некоторой фиксированной длине волны l 1, расположенной примерно посередине видимого диапазона. Во временаШотта и Аббе в качестве главного показателя преломления было принято его значение для желтой D -линии натрия, nD. Однако в дальнейшем выяснилось, что это не одиночная линия, а тесный дублет, и положение центра этого дублета измеряется, естественно, с гораздо меньшей точностью, чем положение одиночных линий. Поэтому в качестве главного показателя преломления стали принимать его значение либо для желтой d -линии гелия, nd (так поступили немецкая фирма Шотт (Schott),[17] японская фирма Хойя (Hoya) и ряд других), либо для желто-зеленой e -линии ртути, ne (так было принято во французской фирме Sovirel, позднее поглощенной фирмой Corning, США, и в документации российских производителей).
Cредняя дисперсия nl 2- nl 3– это разность двух значений показателя преломления при некоторых фиксированных длинах волн l 2 и l 3, расположенных по краям видимого диапазона. Во временаШотта и Аббе в качестве средней дисперсии была принята разность nF - nC для голубой и красной линий водорода (см. табл. 3). В дальнейшем группа производителей, переходившая на использование главного показателя преломления n e, перешла одновременно и на использование средней дисперсии nF¢ - nC¢, где F¢ и С¢ – голубая и красная линии кадмия, очень близкие по положению на шкале длин волн к вышеуказанным линиям водорода (см. табл. 3). Коэффициент дисперсии или число Аббе, nl 1, задается выражением , (7.1.1) то есть представляет собой отношение главного показателя преломления без единицы к средней дисперсии. Соответственно во временаШотта и Аббе было принято представлять число Аббе в виде nD = (nD -1)/(nF - nC), а в настоящее время основными вариантами коэффициента дисперсии являются nd = (nd -1)/(nF - nC) и ne = (ne -1)/(nF¢ - nC¢). Диаграмма Аббе. Для наглядного представления взаимосвязи между основными характеристиками различных оптических материалов Эрнстом Аббе была предложена диаграмма «главный показатель преломления – коэффициент дисперсии», носящая с тех пор его имя. Диаграмма Аббе чрезвычайно удобна для совместного представления всех стекол каталога оптического стекла и других бесцветных материалов и для выбора пар оптических стекол, используемых для ахроматизации оптической системы (см. ниже параграф 7.3). Пример диаграммы Аббе nd - nd для стекол современного каталога фирмы Шотт представлен на рис. 28. Следует обратить внимание, что значения коэффициента дисперсии на диаграмме Аббе возрастают, по традиции, заложенной еще ее автором, справа налево, а не наоборот. При таком выборе координат все бесцветные оптические стекла, известные во временаШотта и Аббе (когда их химические составы базировались лишь на силикатной основе), располагались на этой диаграмме в виде широкой области, вытянутой от нижнего левого угла диаграммы к ее правому верхнему углу. Таким образом, одного взгляда на диаграмму Аббе было достаточно, чтобы увидеть преобладающую тенденцию взаимосвязанного изменения значений двух основных оптических характеристик с химическим составом оптических стекол: с возрастанием главного показателя преломления стекла его коэффициент дисперсии в большинстве случаев уменьшается.
На самом начальном этапе развития оптического стекловарения были выделены всего лишь два основных типа оптических стекол: кроны (стекла с высокими значениями коэффициента дисперсии и сравнительно низкими – показателя преломления) и флинты (стекла с низкими значениями коэффициента дисперсии и высокими – показателя преломления). В дальнейшем общее число оптических стекол быстро возрастало, а область, занимаемая ими на диаграмме Аббе, непрерывно увеличивалась.[18] По мере расширения номенклатуры оптических стекол потребовалось вводить новые их типы и соответственно делить диаграмму Аббе на большее число специфических участков. Прежние кроны распались на легкие кроны, кроны, тяжелые кроны и сверхтяжелые кроны. Прежние флинты распались на легкие флинты, флинты, тяжелые флинты и сверхтяжелые флинты. Между легкими кронами и легкими флинтами появилась группа кронфлинтов. Однако вскоре и этого разнообразия типов оказалось недостаточно. В целях достижения либо предельно высоких значений коэффициента дисперсии, либо высоких значений одновременно и показателя преломления, и коэффициента дисперсии разработка стекол новых составов велась в основном путем использования несиликатных матриц (боратной, фосфатной, фторидной и некоторых других) и ряда новых компонентов (таких, как окислы лантана, тантала, титана). Новые типы стекол стали обозначаться с привлечением названий химических элементов, окислы которых придают им свою специфику. Последняя тенденция ярко проявляется для стекол каталога фирмы Шотт: на соответствующей диаграмме Аббе (см. рис. 28) можно видеть области Рис. 28. Диаграмма Аббе для стекол современного каталога фирмы Шотт. стекол типов FK (фторидных кронов), PK и PSK (фосфатных кронов), BaK, BaLF и BaSF (кронов, легких и тяжелых флинтов, содержащих окись бария), LaK, LaF и LaSF (кронов, флинтов и тяжелых флинтов, содержащих окись лантана).[19] Для стекол на несиликатных основах характерны несколько иные, чем в случае силикатных стекол, сочетания главного показателя преломления и коэффициента дисперсии. В результате область, занимаемая оптическими стеклами на современных диаграммах Аббе (см. рис. 28), существенно расширилась, и поэтому вышеупомянутая тенденция уменьшения коэффициента дисперсии с возрастанием главного показателя преломления стала проявляться не столь ярко. В настоящее время достигнутые пределы значений nd и nd промышленных оптических стекол составляют примерно 17 - 95 и 1.43 - 2.17 соответственно. Крайние значения nd» 95 при nd» 1.43 и nd» 17 при nd» 2.17 относятся к стеклу N-FK56 из каталога фирмы Шотт 1996 года и к российскому стеклу СТФ3 (в настоящее время снятому с производства) соответственно. Для изотропных оптических кристаллов нижний предел соответствует кристаллу фтористого лития (nd» 99 при nd» 1.39) а для анизотропных (одноосных) - кристаллу фтористого магния (для обыкновенного луча nd» 106 при nd» 1.38).
Диаграммы типа Аббе могут строиться и для материалов, прозрачных в других частотных диапазонах, с соответствующим изменением опорных длин волн для выбора главного показателя преломления и средней дисперсии. В частности, для халькогенидных оптических стекол используются диаграммы типа Аббе в координатах n 2.0- n 2.0, n 4.0- n 4.0и n 10.0- n 10.0(см. [8]), где подстрочные индексы указывают длину волны в мкм, а именно: n 2.0= (n 2.0- 1)/(n 1.8- n 2.2); n 4.0= (n 4.0- 1)/(n 3.0- n 5.0); n 10.0= (n 10.0- 1)/(n 8.0- n 12.0).
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 529; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.255.227 (0.011 с.) |